Semantics and Verification of Software

Lecture 20: Dataflow Analysis

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Fixpoint and MOP Solution

Rm Semantics and Verification of Software Summer semester 2007

Fixpoint Solution I

Just as in the denotational semantics of while loops, the equation
system determines a functional whose fixpoints are the solutions of the
equation system.

Definition (Dataflow functional)

The equation system of a dataflow system S = (Lab, E, F,(D,C), ¢,)
induces a functional

Gg: D" — D" : (dy,....d,,) — (d;l,...,dgn)
where Lab = {ly,...,l,} and

ifle &

)t
;&= {U{@l'(dl’) | (I',1;) € F} otherwise

m Semantics and Verification of Software Summer semester 2007

Fixpoint Solution II

Remarks:

o (dy,...,dy,) is a solution of the equation system iff it is a fixpoint
of &g

o If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (dy,...,d}) iff d; C d; for every 1 < i <n)

@ Every transfer function ¢; monotonic in D
= ®g monotonic in D"

o Thus the fixpoint is effectively computable by iteration:

fix(Pg) = |_J{®5(Lpn) i€ N}

where Lpn =(Lp,...,Lp)
—_——
n times
o If maximal length of chains in D is m
—> maximal length of chains in D" is m - n
— fixpoint iteration requires at most m - n steps

Rm Semantics and Verification of Software Summer semester 2007

MOP Solution I

@ Other solution method for dataflow systems
o MOP = Meet Over all Paths
@ Analysis information for block B! :=

least upper bound over all paths leading to [

Definition (Paths)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system. For every
[€ Lab, the set of paths up to [is given by

Path(l) = {[ll, ce 7lk:—1] | k>1l; € E,
(li,li+1) € F for every 1 <1 < k,l; = l}

For a path p = [l1,...,{k—1] € Path(l), we define the transfer function
¢p: D — D by
Ppi=@y_,0...0p, oidp

(so that oy = idp).

m' Semantics and Verification of Software Summer semester 2007

MOP Solution IT

Definition (MOP solution)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system where
Lab ={l1,...,l,}. The MOP solution for S is determined by

mop(.S) := (mop(l1),...,mop(l,)) € D"
where, for every [€ Lab,

mop(l) i=|_Jen(t) | p € Path(D)}.

Remark:
o Path(l) is generally infinite
— not clear how to compute mop(l)
@ In fact: MOP solution generally undecidable (later)

m Semantics and Verification of Software Summer semester 2007

Undecidability of MOP Solution

Theorem (Undecidability of MOP solution)
The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let I be some alphabet, n € N, and uq, ..., up,v1,...,v, € [T.
Does there exist i1,...,4%, € {1,...,n} with m > 1 and i3 = 1 such
that w;, u;, ... U, = V3,0, ... V5, 7

(on the board) O

m Semantics and Verification of Software Summer semester 2007

© MOP vs. Fixpoint Solution

Rm Semantics and Verification of Software Summer semester 2007

MOP vs. Fixpoint Solution I

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let S = (Lab, E, F,(D,C),t,p) be a dataflow system. Then

mop(.S) C fix(Pg)

m' Semantics and Verification of Software Summer semester 2007

MOP vs. Fixpoint Solution I

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let S = (Lab, E, F,(D,C),t,p) be a dataflow system. Then

mop(.S) C fix(Pg)

on the board O

m Semantics and Verification of Software Summer semester 2007

MOP vs. Fixpoint Solution I

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let S = (Lab, E, F,(D,C),t,p) be a dataflow system. Then

mop(.S) C fix(Pg)

on the board O

The next example shows that both solutions can indeed be different.

m Semantics and Verification of Software Summer semester 2007

MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

[x := 2;]?

[y :=3:°
else

[x := 3;]*

m' Semantics and Verification of Software Summer semester 2007

MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

c:=if [z > 0]1 then
[x := 2;]2
ly := 3;]°
else
[x := 3;]*
ly := 2;]°
[z := x+y;]°
[...]
Transfer functions (for
6 = (4(x),6(y),6(z)) € D):
v1((a, b, ¢)) = (a,b,c)
902((0'7{)70)) = (27b7 C)
903((0'7{)70)) = ((L,3,C)
@4((avb>c)) = (3ab7 C)
905((0'7{)70)) = ((L,Q,C)
vs((a,b,¢)) = (a,b,a + b)

m' Semantics and Verification of Software

Summer semester 2007

MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

c:=if [Z > O]l then
fx = 2] o
_ 2.13 @ Fixpoint solution:
el[syeﬁ . CPy =1 =(T,7T,T)
[= 3]4 CPQ = (,01(CP1) = (TvTjT)
. = 2, 5 CP3 = (,OQ(CPQ) = (Z,T,T)
b =21 CPy = 1(CPy) —(T,T,7)
[z := xty3) CPs — a(CP>) - (3,1, T
[. ’] CP6 = (p3(CP3) L (p5(CP5)
Transfer functions (for =(2,3,T)U(3,2,T)=(T,T,T)
6 = (3(x), 0(). (=) € D): CP1 — (CPs) — T
@1((a7 b, C)) = (@7 b, C)
902((0'7 b7 C)) = (27 bv C)
903((0'7 b7 C)) = ((L, 37 C)
@4((a7 b, C)) = (35 b, C)
905((0'7 b7 C)) = ((L, 27 C)
906((0'7 b7 C)) = ((L, bv a+ b)

Semantics and Verification of Software

Summer semester 2007

MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

c:=1if [z > 0] then
[x := 2;] . .
[y := 3;]? © Fixpoint solution:
else CPy =1 =(T,T,T)
[X - 3;]4 CP2 = <p1(CP1) = (T,T,T)
[y := 2;]° CP3 = ¢2(CP>) =(2,T,T)
[Z = X+y,]6 CP4 = QOl(CPl) = (Tv—l—v—l—)
[]7 CP5 = (pz(CPz) = (3,T,T)
CP6 = (p3(CP3) L (p5(CP5)
Transfer functions (for =(2,3,T)U(3,2,T)=(T,T,T)
6 = (8(x),6(y),4(z)) € D): CP7 = 6(CPs) =(T,T,T)
#1((a, b,c)) _ (2,6,¢) © MOP solution:
902((0'7 b7 C)) - (27 bv C)
#3((a,b,0)) = (a,3,¢) mop(7) = #p236(T, T, T)U
va((a,b,c)) = (3,b,¢) P,456(T,T,T)
os((a,b,c)) = (a,2,c) = (2,3,5)U(3,2,5)
e6((a:b,¢)) = (a,b,a+b) =(T.T.5)

m' Semantics and Verification of Software Summer semester 2007

Distributive Transfer Functions I

A sufficient criterion for the coincidenece of MOP and Fixpoint
Solution is the distributivity of the transfer functions.

Definition 20.3 (Distributivity)

o Let (D,C) and (D’,C') be complete lattices, and let F: D — D'.
F is called distributive (w.r.t. (D,C) and (D’,C")) if, for every
di,dpy € D,

F(dl Up d2) = F(dl) L pr F(dg)

m Semantics and Verification of Software Summer semester 2007

Distributive Transfer Functions I

Definition 20.3 (Distributivity)

o Let (D,C) and (D’,C') be complete lattices, and let F: D — D'.
F is called distributive (w.r.t. (D,C) and (D’,C")) if, for every
di,dpy € D,

F(dl Up d2) = F(dl) L pr F(dg)

o A dataflow system S = (Lab, E, F,(D,C), ¢,) is called

distributive if every ¢; : D — D is so.

m' Semantics and Verification of Software Summer semester 2007

Distributive Transfer Functions I1

Example 20.4

@ The Available Expressions dataflow system is distributive:

@i(A1 U Az) = ((A1 N A2) \ killag (B')) U genpg(BY)
= ((A1 \ killag(B")) U genpg(B")) N
((A2 \ killag(B")) U genpg(B"))
= ¢i(A1) U pi(A2)

m Semantics and Verification of Software Summer semester 2007

Distributive Transfer Functions I1

Example 20.4

@ The Available Expressions dataflow system is distributive:

@i(A1 U Az) = ((A1 N A2) \ killag (B')) U genpg(BY)
= ((A1 \ killag(B")) U genag(BY)) N
((A2 \ killag(B")) U genpg(B"))
= pi(A1) U pi(A2)

© The Live Variables dataflow system is distributive (similar)

m' Semantics and Verification of Software Summer semester 2007

Distributive Transfer Functions I1

Example 20.4

@ The Available Expressions dataflow system is distributive:

@i(A1 U Az) = ((A1 N A2) \ killag (B')) U genpg(BY)
= ((A1 \ killag(B")) U genag(BY)) N
((A2 \ killag(B")) U genpg(B"))
= pi(A1) U pi(A2)

© The Live Variables dataflow system is distributive (similar)

© The Constant Propagation dataflow system is not distributive:

(T, T,T) = @z:exsy((2,3, T) L(3,2,T))
Pz:=xey((2,3, T)) U 22224y ((3,2, T))
= (T,T,5)

m' Semantics and Verification of Software Summer semester 2007

Coincidence of MOP and Fixpoint Solution

Theorem 20.5 (MOP vs. Fixpoint Solution)

Let S = (Lab,E, F,(D,C),t,) be a distributive dataflow system. Then

mop(S) = fix(Ps)

Rm Semantics and Verification of Software Summer semester 2007

Coincidence of MOP and Fixpoint Solution

Theorem 20.5 (MOP vs. Fixpoint Solution)

Let S = (Lab,E, F,(D,C),t,) be a distributive dataflow system. Then

mop(.S) = fix(Pg)

o by showing that ®g(mop(S)) = mop(S) ...
(see [Nielson/Nielson/Hankin 2005, p. 81])

o ... and using mop(S) C fix(®g) (Theorem 20.1)

m Semantics and Verification of Software Summer semester 2007

© Diplomarbeit/Master Thesis

Rm Semantics and Verification of Software Summer semester 2007

Model Checking Microcontroller Assembly Code

@ Motivation: microcontrollers frequently employed in embedded
Systems

Rm Semantics and Verification of Software Summer semester 2007

Model Checking Microcontroller Assembly Code

@ Motivation: microcontrollers frequently employed in embedded
Systems

o Embedded systems often safety—critical (cars, planes, medical
devices, ...)

Rm Semantics and Verification of Software Summer semester 2007

Model Checking Microcontroller Assembly Code

@ Motivation: microcontrollers frequently employed in embedded
Systems

o Embedded systems often safety—critical (cars, planes, medical
devices, ...)

o Exhaustive testing generally impossible (uncertain environments,
huge state spaces, ...)

Rm Semantics and Verification of Software Summer semester 2007

Model Checking Microcontroller Assembly Code

@ Motivation: microcontrollers frequently employed in embedded
Systems

o Embedded systems often safety—critical (cars, planes, medical
devices, ...)

o Exhaustive testing generally impossible (uncertain environments,
huge state spaces, ...)

= Formal reasoning methods

Rm Semantics and Verification of Software Summer semester 2007

Model Checking Microcontroller Assembly Code

@ Motivation: microcontrollers frequently employed in embedded
Systems

o Embedded systems often safety—critical (cars, planes, medical
devices, ...)

o Exhaustive testing generally impossible (uncertain environments,
huge state spaces, ...)
—> Formal reasoning methods
?
@ Here: Model Checking system |= specification
system: (semantics of) assembly code = labeled transition

System
specification: formula of some temporal logic

@ never two processes in critical section:
AG —\(critl A Critg)

o every request will be answered before timeout:
AG (req = - timeout U answer)

Rm Semantics and Verification of Software Summer semester 2007

The [MC]Jsquare Tool

[mc]square
formula parser formula
l | model
cfg static analyzer state space checker
elf file preprocessor assembly simulator
program
C file C file
“l] counterexample
e generator result

m' Semantics and Verification of swar Summer semester 2007

Current State

@ Currently supported microprocessors:

o Atmel ATmega 16
o Infineon XC167

Rm Semantics and Verification of Software Summer semester 2007

Current State

@ Currently supported microprocessors:

o Atmel ATmega 16
o Infineon XC167

@ State—space generator written by hand for each microprocessor

Rm Semantics and Verification of Software Summer semester 2007

Current State

@ Currently supported microprocessors:

o Atmel ATmega 16
o Infineon XC167

@ State—space generator written by hand for each microprocessor

@ Desirable: compiler—generating approach

microprocessor specification — state—space generator

Rm Semantics and Verification of Software Summer semester 2007

Current State

@ Currently supported microprocessors:

o Atmel ATmega 16
o Infineon XC167

@ State—space generator written by hand for each microprocessor

@ Desirable: compiler—generating approach

microprocessor specification — state—space generator

o (Parts of) formal model available:
o Interrupt handler:

SREG[I] = 1 A TIMSK[TOIEO] = 1 A TIFR[TOVO] =1 —: 18 >
SREG[I] = 1 A GICR[INT2] = 1 A GIFR[INTF2] =1 —:36 > ...

¢ Instruction handler (here: ADD Ri,Rj at address q):

q :Ri:=Ri+Rj,SREG[Z] := (Ri +Rj = 0),SREG[C] :=...,...: ¢+ 2

Rm Semantics and Verification of Software Summer semester 2007

The Thesis

Goal:

@ Tool for automatic generation of (parts of) state-space generator
from microprocessor specification

o Embedded in [mc|square environment

@ Support of state-space abstraction techniques (“delayed
nondeterminism”)

@ Case study: Motorola ARM 7

Rm Semantics and Verification of Software Summer semester 2007

schlich@cs.rwth-aachen.de
noll@cs.rwth-aachen.de

The Thesis

Goal:

@ Tool for automatic generation of (parts of) state-space generator
from microprocessor specification

o Embedded in [mc|square environment

@ Support of state-space abstraction techniques (“delayed
nondeterminism”)

@ Case study: Motorola ARM 7
Desirable prerequesites:
e Formal Methods for Embedded Systems [Kowalewski]
@ Model Checking [Katoen, Thomas]
o Compiler Construction [Indermark, Noll|
°

Semantics and Verification of Software [Noll]

Rm Semantics and Verification of Software Summer semester 2007

schlich@cs.rwth-aachen.de
noll@cs.rwth-aachen.de

The Thesis

Goal:

@ Tool for automatic generation of (parts of) state-space generator
from microprocessor specification

o Embedded in [mc|square environment

@ Support of state-space abstraction techniques (“delayed
nondeterminism”)

@ Case study: Motorola ARM 7
Desirable prerequesites:
e Formal Methods for Embedded Systems [Kowalewski]
@ Model Checking [Katoen, Thomas]
o Compiler Construction [Indermark, Noll|
o Semantics and Verification of Software [Noll]
Contact:
@ Bastian Schlich (Inf. 11, schlich@cs.rwth-aachen.de)
@ Thomas Noll (Inf. 2, noll@cs.rwth-aachen.de)

Rm Semantics and Verification of Software Summer semester 2007

schlich@cs.rwth-aachen.de
noll@cs.rwth-aachen.de

@ Evaluation of the Course

Rm Semantics and Verification of Software Summer semester 2007

	Repetition: Fixpoint and MOP Solution
	MOP vs. Fixpoint Solution
	Diplomarbeit/Master Thesis
	Evaluation of the Course

