
Semantics and Verification of Software
Lecture 20: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/


Outline

1 Repetition: Fixpoint and MOP Solution

2 MOP vs. Fixpoint Solution

3 Diplomarbeit/Master Thesis

4 Evaluation of the Course

Semantics and Verification of Software Summer semester 2007 2



Fixpoint Solution I

Just as in the denotational semantics of while loops, the equation
system determines a functional whose fixpoints are the solutions of the
equation system.

Definition (Dataflow functional)

The equation system of a dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)
induces a functional

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′

ln
)

where Lab = {l1, . . . , ln} and

d′li :=

{
ι if l ∈ E
⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise

Semantics and Verification of Software Summer semester 2007 3



Fixpoint Solution II

Remarks:

(d1, . . . , dn) is a solution of the equation system iff it is a fixpoint
of ΦS

If (D,⊑) is a complete lattice satisfying ACC, then so is (Dn,⊑n)
(where (d1, . . . , dn) ⊑n (d′1, . . . , d

′

n) iff di ⊑ d′i for every 1 ≤ i ≤ n)

Every transfer function ϕl monotonic in D

=⇒ ΦS monotonic in Dn

Thus the fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔

{Φi
S(⊥Dn) | i ∈ N}

where ⊥Dn = (⊥D, . . . ,⊥D
︸ ︷︷ ︸

n times

)

If maximal length of chains in D is m

=⇒ maximal length of chains in Dn is m · n
=⇒ fixpoint iteration requires at most m · n steps

Semantics and Verification of Software Summer semester 2007 4



MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl :=
least upper bound over all paths leading to l

Definition (Paths)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer semester 2007 5



MOP Solution II

Definition (MOP solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ Lab,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Semantics and Verification of Software Summer semester 2007 6



Undecidability of MOP Solution

Theorem (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let Γ be some alphabet, n ∈ N, and u1, . . . , un, v1, . . . , vn ∈ Γ+.
Does there exist i1, . . . , im ∈ {1, . . . , n} with m ≥ 1 and i1 = 1 such
that ui1ui2 . . . uim = vi1vi2 . . . vim?

(on the board)

Semantics and Verification of Software Summer semester 2007 7



Outline

1 Repetition: Fixpoint and MOP Solution

2 MOP vs. Fixpoint Solution

3 Diplomarbeit/Master Thesis

4 Evaluation of the Course

Semantics and Verification of Software Summer semester 2007 8



MOP vs. Fixpoint Solution I

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. Then

mop(S) ⊑ fix(ΦS)

Proof.

on the board

The next example shows that both solutions can indeed be different.

Semantics and Verification of Software Summer semester 2007 9



MOP vs. Fixpoint Solution I

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. Then

mop(S) ⊑ fix(ΦS)

Proof.

on the board

The next example shows that both solutions can indeed be different.

Semantics and Verification of Software Summer semester 2007 9



MOP vs. Fixpoint Solution I

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. Then

mop(S) ⊑ fix(ΦS)

Proof.

on the board

The next example shows that both solutions can indeed be different.

Semantics and Verification of Software Summer semester 2007 9



MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

c := if [z > 0]1 then

[x := 2;]2

[y := 3;]3

else

[x := 3;]4

[y := 2;]5

[z := x+y;]6

[. . .]7

Transfer functions (for
δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a + b)

1 Fixpoint solution:
CP1 = ι = (⊤,⊤,⊤)
CP2 = ϕ1(CP1) = (⊤,⊤,⊤)
CP3 = ϕ2(CP2) = (2,⊤,⊤)
CP4 = ϕ1(CP1) = (⊤,⊤,⊤)
CP5 = ϕ2(CP2) = (3,⊤,⊤)
CP6 = ϕ3(CP3) ⊔ ϕ5(CP5)

= (2, 3,⊤) ⊔ (3, 2,⊤) = (⊤,⊤,⊤)
CP7 = ϕ6(CP6) = (⊤,⊤,⊤)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](⊤,⊤,⊤)⊔

ϕ[1,4,5,6](⊤,⊤,⊤)
= (2, 3, 5) ⊔ (3, 2, 5)
= (⊤,⊤, 5)

Semantics and Verification of Software Summer semester 2007 10



MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

c := if [z > 0]1 then

[x := 2;]2

[y := 3;]3

else

[x := 3;]4

[y := 2;]5

[z := x+y;]6

[. . .]7

Transfer functions (for
δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a + b)

1 Fixpoint solution:
CP1 = ι = (⊤,⊤,⊤)
CP2 = ϕ1(CP1) = (⊤,⊤,⊤)
CP3 = ϕ2(CP2) = (2,⊤,⊤)
CP4 = ϕ1(CP1) = (⊤,⊤,⊤)
CP5 = ϕ2(CP2) = (3,⊤,⊤)
CP6 = ϕ3(CP3) ⊔ ϕ5(CP5)

= (2, 3,⊤) ⊔ (3, 2,⊤) = (⊤,⊤,⊤)
CP7 = ϕ6(CP6) = (⊤,⊤,⊤)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](⊤,⊤,⊤)⊔

ϕ[1,4,5,6](⊤,⊤,⊤)
= (2, 3, 5) ⊔ (3, 2, 5)
= (⊤,⊤, 5)

Semantics and Verification of Software Summer semester 2007 10



MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

c := if [z > 0]1 then

[x := 2;]2

[y := 3;]3

else

[x := 3;]4

[y := 2;]5

[z := x+y;]6

[. . .]7

Transfer functions (for
δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a + b)

1 Fixpoint solution:
CP1 = ι = (⊤,⊤,⊤)
CP2 = ϕ1(CP1) = (⊤,⊤,⊤)
CP3 = ϕ2(CP2) = (2,⊤,⊤)
CP4 = ϕ1(CP1) = (⊤,⊤,⊤)
CP5 = ϕ2(CP2) = (3,⊤,⊤)
CP6 = ϕ3(CP3) ⊔ ϕ5(CP5)

= (2, 3,⊤) ⊔ (3, 2,⊤) = (⊤,⊤,⊤)
CP7 = ϕ6(CP6) = (⊤,⊤,⊤)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](⊤,⊤,⊤)⊔

ϕ[1,4,5,6](⊤,⊤,⊤)
= (2, 3, 5) ⊔ (3, 2, 5)
= (⊤,⊤, 5)

Semantics and Verification of Software Summer semester 2007 10



MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

c := if [z > 0]1 then

[x := 2;]2

[y := 3;]3

else

[x := 3;]4

[y := 2;]5

[z := x+y;]6

[. . .]7

Transfer functions (for
δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a + b)

1 Fixpoint solution:
CP1 = ι = (⊤,⊤,⊤)
CP2 = ϕ1(CP1) = (⊤,⊤,⊤)
CP3 = ϕ2(CP2) = (2,⊤,⊤)
CP4 = ϕ1(CP1) = (⊤,⊤,⊤)
CP5 = ϕ2(CP2) = (3,⊤,⊤)
CP6 = ϕ3(CP3) ⊔ ϕ5(CP5)

= (2, 3,⊤) ⊔ (3, 2,⊤) = (⊤,⊤,⊤)
CP7 = ϕ6(CP6) = (⊤,⊤,⊤)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](⊤,⊤,⊤)⊔

ϕ[1,4,5,6](⊤,⊤,⊤)
= (2, 3, 5) ⊔ (3, 2, 5)
= (⊤,⊤, 5)

Semantics and Verification of Software Summer semester 2007 10



Distributive Transfer Functions I

A sufficient criterion for the coincidenece of MOP and Fixpoint
Solution is the distributivity of the transfer functions.

Definition 20.3 (Distributivity)

Let (D,⊑) and (D′,⊑′) be complete lattices, and let F : D → D′.
F is called distributive (w.r.t. (D,⊑) and (D′,⊑′)) if, for every
d1, d2 ∈ D,

F (d1 ⊔D d2) = F (d1) ⊔D′ F (d2).

A dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ) is called
distributive if every ϕl : D → D is so.

Semantics and Verification of Software Summer semester 2007 11



Distributive Transfer Functions I

A sufficient criterion for the coincidenece of MOP and Fixpoint
Solution is the distributivity of the transfer functions.

Definition 20.3 (Distributivity)

Let (D,⊑) and (D′,⊑′) be complete lattices, and let F : D → D′.
F is called distributive (w.r.t. (D,⊑) and (D′,⊑′)) if, for every
d1, d2 ∈ D,

F (d1 ⊔D d2) = F (d1) ⊔D′ F (d2).

A dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ) is called
distributive if every ϕl : D → D is so.

Semantics and Verification of Software Summer semester 2007 11



Distributive Transfer Functions II

Example 20.4

1 The Available Expressions dataflow system is distributive:

ϕl(A1 ⊔ A2) = ((A1 ∩ A2) \ killAE(Bl)) ∪ genAE(Bl)
= ((A1 \ killAE(Bl)) ∪ genAE(Bl))∩

((A2 \ killAE(Bl)) ∪ genAE(Bl))
= ϕl(A1) ⊔ ϕl(A2)

2 The Live Variables dataflow system is distributive (similar)

3 The Constant Propagation dataflow system is not distributive:

(⊤,⊤,⊤) = ϕz:=x+y((2, 3,⊤) ⊔ (3, 2,⊤))
6= ϕz:=x+y((2, 3,⊤)) ⊔ ϕz:=x+y((3, 2,⊤))
= (⊤,⊤, 5)

Semantics and Verification of Software Summer semester 2007 12



Distributive Transfer Functions II

Example 20.4

1 The Available Expressions dataflow system is distributive:

ϕl(A1 ⊔ A2) = ((A1 ∩ A2) \ killAE(Bl)) ∪ genAE(Bl)
= ((A1 \ killAE(Bl)) ∪ genAE(Bl))∩

((A2 \ killAE(Bl)) ∪ genAE(Bl))
= ϕl(A1) ⊔ ϕl(A2)

2 The Live Variables dataflow system is distributive (similar)

3 The Constant Propagation dataflow system is not distributive:

(⊤,⊤,⊤) = ϕz:=x+y((2, 3,⊤) ⊔ (3, 2,⊤))
6= ϕz:=x+y((2, 3,⊤)) ⊔ ϕz:=x+y((3, 2,⊤))
= (⊤,⊤, 5)

Semantics and Verification of Software Summer semester 2007 12



Distributive Transfer Functions II

Example 20.4

1 The Available Expressions dataflow system is distributive:

ϕl(A1 ⊔ A2) = ((A1 ∩ A2) \ killAE(Bl)) ∪ genAE(Bl)
= ((A1 \ killAE(Bl)) ∪ genAE(Bl))∩

((A2 \ killAE(Bl)) ∪ genAE(Bl))
= ϕl(A1) ⊔ ϕl(A2)

2 The Live Variables dataflow system is distributive (similar)

3 The Constant Propagation dataflow system is not distributive:

(⊤,⊤,⊤) = ϕz:=x+y((2, 3,⊤) ⊔ (3, 2,⊤))
6= ϕz:=x+y((2, 3,⊤)) ⊔ ϕz:=x+y((3, 2,⊤))
= (⊤,⊤, 5)

Semantics and Verification of Software Summer semester 2007 12



Coincidence of MOP and Fixpoint Solution

Theorem 20.5 (MOP vs. Fixpoint Solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a distributive dataflow system. Then

mop(S) = fix(ΦS)

Proof.

by showing that ΦS(mop(S)) = mop(S) ...
(see [Nielson/Nielson/Hankin 2005, p. 81])

... and using mop(S) ⊑ fix(ΦS) (Theorem 20.1)

Semantics and Verification of Software Summer semester 2007 13



Coincidence of MOP and Fixpoint Solution

Theorem 20.5 (MOP vs. Fixpoint Solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a distributive dataflow system. Then

mop(S) = fix(ΦS)

Proof.

by showing that ΦS(mop(S)) = mop(S) ...
(see [Nielson/Nielson/Hankin 2005, p. 81])

... and using mop(S) ⊑ fix(ΦS) (Theorem 20.1)

Semantics and Verification of Software Summer semester 2007 13



Outline

1 Repetition: Fixpoint and MOP Solution

2 MOP vs. Fixpoint Solution

3 Diplomarbeit/Master Thesis

4 Evaluation of the Course

Semantics and Verification of Software Summer semester 2007 14



Model Checking Microcontroller Assembly Code

Motivation: microcontrollers frequently employed in embedded
systems

Embedded systems often safety–critical (cars, planes, medical
devices, ...)

Exhaustive testing generally impossible (uncertain environments,
huge state spaces, ...)

=⇒ Formal reasoning methods

Here: Model Checking system
?

|= specification

system: (semantics of) assembly code =⇒ labeled transition
system

specification: formula of some temporal logic

never two processes in critical section:
AG ¬(crit1 ∧ crit2)
every request will be answered before timeout:
AG (req =⇒ ¬ timeout U answer)

Semantics and Verification of Software Summer semester 2007 15



Model Checking Microcontroller Assembly Code

Motivation: microcontrollers frequently employed in embedded
systems

Embedded systems often safety–critical (cars, planes, medical
devices, ...)

Exhaustive testing generally impossible (uncertain environments,
huge state spaces, ...)

=⇒ Formal reasoning methods

Here: Model Checking system
?

|= specification

system: (semantics of) assembly code =⇒ labeled transition
system

specification: formula of some temporal logic

never two processes in critical section:
AG ¬(crit1 ∧ crit2)
every request will be answered before timeout:
AG (req =⇒ ¬ timeout U answer)

Semantics and Verification of Software Summer semester 2007 15



Model Checking Microcontroller Assembly Code

Motivation: microcontrollers frequently employed in embedded
systems

Embedded systems often safety–critical (cars, planes, medical
devices, ...)

Exhaustive testing generally impossible (uncertain environments,
huge state spaces, ...)

=⇒ Formal reasoning methods

Here: Model Checking system
?

|= specification

system: (semantics of) assembly code =⇒ labeled transition
system

specification: formula of some temporal logic

never two processes in critical section:
AG ¬(crit1 ∧ crit2)
every request will be answered before timeout:
AG (req =⇒ ¬ timeout U answer)

Semantics and Verification of Software Summer semester 2007 15



Model Checking Microcontroller Assembly Code

Motivation: microcontrollers frequently employed in embedded
systems

Embedded systems often safety–critical (cars, planes, medical
devices, ...)

Exhaustive testing generally impossible (uncertain environments,
huge state spaces, ...)

=⇒ Formal reasoning methods

Here: Model Checking system
?

|= specification

system: (semantics of) assembly code =⇒ labeled transition
system

specification: formula of some temporal logic

never two processes in critical section:
AG ¬(crit1 ∧ crit2)
every request will be answered before timeout:
AG (req =⇒ ¬ timeout U answer)

Semantics and Verification of Software Summer semester 2007 15



Model Checking Microcontroller Assembly Code

Motivation: microcontrollers frequently employed in embedded
systems

Embedded systems often safety–critical (cars, planes, medical
devices, ...)

Exhaustive testing generally impossible (uncertain environments,
huge state spaces, ...)

=⇒ Formal reasoning methods

Here: Model Checking system
?

|= specification

system: (semantics of) assembly code =⇒ labeled transition
system

specification: formula of some temporal logic

never two processes in critical section:
AG ¬(crit1 ∧ crit2)
every request will be answered before timeout:
AG (req =⇒ ¬ timeout U answer)

Semantics and Verification of Software Summer semester 2007 15



The [MC]square Tool

Semantics and Verification of Software Summer semester 2007 16



Current State

Currently supported microprocessors:
Atmel ATmega 16
Infineon XC167

State–space generator written by hand for each microprocessor

Desirable: compiler–generating approach

microprocessor specification → state–space generator

(Parts of) formal model available:
Interrupt handler:

SREG[I] = 1 ∧ TIMSK[TOIE0] = 1 ∧ TIFR[TOV0] = 1 →: 18 >
SREG[I] = 1 ∧ GICR[INT2] = 1 ∧ GIFR[INTF2] = 1 →: 36 > . . .

Instruction handler (here: ADD Ri,Rj at address q):

q : Ri := Ri + Rj, SREG[Z] := (Ri + Rj = 0), SREG[C] := . . . , . . . : q + 2

Semantics and Verification of Software Summer semester 2007 17



Current State

Currently supported microprocessors:
Atmel ATmega 16
Infineon XC167

State–space generator written by hand for each microprocessor

Desirable: compiler–generating approach

microprocessor specification → state–space generator

(Parts of) formal model available:
Interrupt handler:

SREG[I] = 1 ∧ TIMSK[TOIE0] = 1 ∧ TIFR[TOV0] = 1 →: 18 >
SREG[I] = 1 ∧ GICR[INT2] = 1 ∧ GIFR[INTF2] = 1 →: 36 > . . .

Instruction handler (here: ADD Ri,Rj at address q):

q : Ri := Ri + Rj, SREG[Z] := (Ri + Rj = 0), SREG[C] := . . . , . . . : q + 2

Semantics and Verification of Software Summer semester 2007 17



Current State

Currently supported microprocessors:
Atmel ATmega 16
Infineon XC167

State–space generator written by hand for each microprocessor

Desirable: compiler–generating approach

microprocessor specification → state–space generator

(Parts of) formal model available:
Interrupt handler:

SREG[I] = 1 ∧ TIMSK[TOIE0] = 1 ∧ TIFR[TOV0] = 1 →: 18 >
SREG[I] = 1 ∧ GICR[INT2] = 1 ∧ GIFR[INTF2] = 1 →: 36 > . . .

Instruction handler (here: ADD Ri,Rj at address q):

q : Ri := Ri + Rj, SREG[Z] := (Ri + Rj = 0), SREG[C] := . . . , . . . : q + 2

Semantics and Verification of Software Summer semester 2007 17



Current State

Currently supported microprocessors:
Atmel ATmega 16
Infineon XC167

State–space generator written by hand for each microprocessor

Desirable: compiler–generating approach

microprocessor specification → state–space generator

(Parts of) formal model available:
Interrupt handler:

SREG[I] = 1 ∧ TIMSK[TOIE0] = 1 ∧ TIFR[TOV0] = 1 →: 18 >
SREG[I] = 1 ∧ GICR[INT2] = 1 ∧ GIFR[INTF2] = 1 →: 36 > . . .

Instruction handler (here: ADD Ri,Rj at address q):

q : Ri := Ri + Rj, SREG[Z] := (Ri + Rj = 0), SREG[C] := . . . , . . . : q + 2

Semantics and Verification of Software Summer semester 2007 17



The Thesis

Goal:

Tool for automatic generation of (parts of) state–space generator
from microprocessor specification

Embedded in [mc]square environment

Support of state–space abstraction techniques (“delayed
nondeterminism”)

Case study: Motorola ARM 7

Desirable prerequesites:

Formal Methods for Embedded Systems [Kowalewski]

Model Checking [Katoen, Thomas]

Compiler Construction [Indermark, Noll]

Semantics and Verification of Software [Noll]

Contact:

Bastian Schlich (Inf. 11, schlich@cs.rwth-aachen.de)

Thomas Noll (Inf. 2, noll@cs.rwth-aachen.de)

Semantics and Verification of Software Summer semester 2007 18

schlich@cs.rwth-aachen.de
noll@cs.rwth-aachen.de


The Thesis

Goal:

Tool for automatic generation of (parts of) state–space generator
from microprocessor specification

Embedded in [mc]square environment

Support of state–space abstraction techniques (“delayed
nondeterminism”)

Case study: Motorola ARM 7

Desirable prerequesites:

Formal Methods for Embedded Systems [Kowalewski]

Model Checking [Katoen, Thomas]

Compiler Construction [Indermark, Noll]

Semantics and Verification of Software [Noll]

Contact:

Bastian Schlich (Inf. 11, schlich@cs.rwth-aachen.de)

Thomas Noll (Inf. 2, noll@cs.rwth-aachen.de)

Semantics and Verification of Software Summer semester 2007 18

schlich@cs.rwth-aachen.de
noll@cs.rwth-aachen.de


The Thesis

Goal:

Tool for automatic generation of (parts of) state–space generator
from microprocessor specification

Embedded in [mc]square environment

Support of state–space abstraction techniques (“delayed
nondeterminism”)

Case study: Motorola ARM 7

Desirable prerequesites:

Formal Methods for Embedded Systems [Kowalewski]

Model Checking [Katoen, Thomas]

Compiler Construction [Indermark, Noll]

Semantics and Verification of Software [Noll]

Contact:

Bastian Schlich (Inf. 11, schlich@cs.rwth-aachen.de)

Thomas Noll (Inf. 2, noll@cs.rwth-aachen.de)

Semantics and Verification of Software Summer semester 2007 18

schlich@cs.rwth-aachen.de
noll@cs.rwth-aachen.de


Outline

1 Repetition: Fixpoint and MOP Solution

2 MOP vs. Fixpoint Solution

3 Diplomarbeit/Master Thesis

4 Evaluation of the Course

Semantics and Verification of Software Summer semester 2007 19


	Repetition: Fixpoint and MOP Solution
	MOP vs. Fixpoint Solution
	Diplomarbeit/Master Thesis
	Evaluation of the Course

