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Fixpoint Solution I

Just as in the denotational semantics of while loops, the equation
system determines a functional whose fixpoints are the solutions of the
equation system.

Definition (Dataflow functional)

The equation system of a dataflow system S = (Lab, E, F,(D,C), ¢, )
induces a functional

Gg: D" — D" : (dy,....d,,) — (d;l,...,dgn)
where Lab = {ly,...,l,} and

ifle &

)t
;&= {U{@l'(dl’) | (I',1;) € F} otherwise
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Fixpoint Solution II

Remarks:

o (dy,...,dy,) is a solution of the equation system iff it is a fixpoint
of &g

o If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (dy,...,d}) iff d; C d; for every 1 < i <n)

@ Every transfer function ¢; monotonic in D
= ®g monotonic in D"

o Thus the fixpoint is effectively computable by iteration:

fix(Pg) = |_J{®5(Lpn) i€ N}

where Lpn =(Lp,...,Lp)
—_——
n times
o If maximal length of chains in D is m
—> maximal length of chains in D" is m - n
— fixpoint iteration requires at most m - n steps
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MOP Solution I

@ Other solution method for dataflow systems
o MOP = Meet Over all Paths
@ Analysis information for block B! :=

least upper bound over all paths leading to [

Definition (Paths)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system. For every
[ € Lab, the set of paths up to [ is given by

Path(l) = {[ll, ce 7lk:—1] | k>1l; € E,
(li,li+1) € F for every 1 <1 < k,l; = l}

For a path p = [l1,...,{k—1] € Path(l), we define the transfer function
¢p: D — D by
Ppi=@y_,0...0p, oidp

(so that oy = idp).

m' Semantics and Verification of Software Summer semester 2007



MOP Solution IT

Definition (MOP solution)

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system where
Lab ={l1,...,l,}. The MOP solution for S is determined by

mop(.S) := (mop(l1),...,mop(l,)) € D"
where, for every [ € Lab,

mop(l) i=|_Jen(t) | p € Path(D)}.

Remark:
o Path(l) is generally infinite
— not clear how to compute mop(l)
@ In fact: MOP solution generally undecidable (later)
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Undecidability of MOP Solution

Theorem (Undecidability of MOP solution)
The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let I be some alphabet, n € N, and uq, ..., up,v1,...,v, € [T.
Does there exist i1,...,4%, € {1,...,n} with m > 1 and i3 = 1 such
that w;, u;, ... U, = V3,0, ... V5, 7

(on the board) O
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© MOP vs. Fixpoint Solution
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MOP vs. Fixpoint Solution I

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let S = (Lab, E, F,(D,C),t,p) be a dataflow system. Then

mop(.S) C fix(Pg)
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MOP vs. Fixpoint Solution I

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let S = (Lab, E, F,(D,C),t,p) be a dataflow system. Then

mop(.S) C fix(Pg)

on the board O

The next example shows that both solutions can indeed be different.
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MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

[x := 2;]?

[y :=3:°
else

[x := 3;]*

m' Semantics and Verification of Software Summer semester 2007



MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

c:=if [z > 0]1 then
[x := 2;]2
ly := 3;]°
else
[x := 3;]*
ly := 2;]°
[z := x+y;]°
[...]
Transfer functions (for
6 = (4(x),6(y),6(z)) € D):
v1((a, b, ¢)) = (a,b,c)
902((0'7{)70)) = (27b7 C)
903((0'7{)70)) = ((L,3,C)
@4((avb>c)) = (3ab7 C)
905((0'7{)70)) = ((L,Q,C)
vs((a,b,¢)) = (a,b,a + b)
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MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

c:=if [Z > O]l then
fx = 2] o
_ 2.13 @ Fixpoint solution:
el[syeﬁ . CPy =1 =(T,7T,T)
[ = 3]4 CPQ = (,01(CP1) = (TvTjT)
. = 2, 5 CP3 = (,OQ(CPQ) = (Z,T,T)
b =21 CPy = 1(CPy) —(T,T,7)
[z := xty3) CPs — a(CP>) - (3,1, T
[. ’ ] CP6 = (p3(CP3) L (p5(CP5)
Transfer functions (for =(2,3,T)U(3,2,T)=(T,T,T)
6 = (3(x), 0(). (=) € D): CP1 — (CPs) — T
@1((a7 b, C)) = (@7 b, C)
902((0'7 b7 C)) = (27 bv C)
903((0'7 b7 C)) = ((L, 37 C)
@4((a7 b, C)) = (35 b, C)
905((0'7 b7 C)) = ((L, 27 C)
906((0'7 b7 C)) = ((L, bv a+ b)
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MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

c:=1if [z > 0] then
[x := 2;] . .
[y := 3;]? © Fixpoint solution:
else CPy =1 =(T,T,T)
[X - 3;]4 CP2 = <p1(CP1) = (T,T,T)
[y := 2;]° CP3 = ¢2(CP>) =(2,T,T)
[Z = X+y,]6 CP4 = QOl(CPl) = (Tv—l—v—l—)
[ ]7 CP5 = (pz(CPz) = (3,T,T)
CP6 = (p3(CP3) L (p5(CP5)
Transfer functions (for =(2,3,T)U(3,2,T)=(T,T,T)
6 = (8(x),6(y),4(z)) € D): CP7 = 6(CPs) =(T,T,T)
#1((a, b,c)) _ (2,6,¢) © MOP solution:
902((0'7 b7 C)) - (27 bv C)
#3((a,b,0)) = (a,3,¢) mop(7) = #p236(T, T, T)U
va((a,b,c)) = (3,b,¢) P,456(T,T,T)
os((a,b,c)) = (a,2,c) = (2,3,5)U(3,2,5)
e6((a:b,¢)) = (a,b,a+b) =(T.T.5)
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Distributive Transfer Functions I

A sufficient criterion for the coincidenece of MOP and Fixpoint
Solution is the distributivity of the transfer functions.

Definition 20.3 (Distributivity)

o Let (D,C) and (D’,C') be complete lattices, and let F: D — D'.
F is called distributive (w.r.t. (D,C) and (D’,C")) if, for every
di,dpy € D,

F(dl Up d2) = F(dl) L pr F(dg)
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Distributive Transfer Functions I

Definition 20.3 (Distributivity)

o Let (D,C) and (D’,C') be complete lattices, and let F: D — D'.
F is called distributive (w.r.t. (D,C) and (D’,C")) if, for every
di,dpy € D,

F(dl Up d2) = F(dl) L pr F(dg)

o A dataflow system S = (Lab, E, F,(D,C), ¢, ) is called

distributive if every ¢; : D — D is so.
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Distributive Transfer Functions I1

Example 20.4

@ The Available Expressions dataflow system is distributive:

@i(A1 U Az) = ((A1 N A2) \ killag (B')) U genpg(BY)
= ((A1 \ killag(B")) U genpg(B")) N
((A2 \ killag(B")) U genpg(B"))
= ¢i(A1) U pi(A2)
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Distributive Transfer Functions I1

Example 20.4

@ The Available Expressions dataflow system is distributive:

@i(A1 U Az) = ((A1 N A2) \ killag (B')) U genpg(BY)
= ((A1 \ killag(B")) U genag(BY)) N
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© The Live Variables dataflow system is distributive (similar)
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Distributive Transfer Functions I1

Example 20.4

@ The Available Expressions dataflow system is distributive:

@i(A1 U Az) = ((A1 N A2) \ killag (B')) U genpg(BY)
= ((A1 \ killag(B")) U genag(BY)) N
((A2 \ killag(B")) U genpg(B"))
= pi(A1) U pi(A2)

© The Live Variables dataflow system is distributive (similar)

© The Constant Propagation dataflow system is not distributive:

(T, T,T) = @z:exsy((2,3, T) L(3,2,T))
# Pz:=xey((2,3, T)) U 22224y ((3,2, T))
= (T,T,5)
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Coincidence of MOP and Fixpoint Solution

Theorem 20.5 (MOP vs. Fixpoint Solution)

Let S = (Lab,E, F,(D,C),t, ) be a distributive dataflow system. Then

mop(S) = fix(Ps)
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Coincidence of MOP and Fixpoint Solution

Theorem 20.5 (MOP vs. Fixpoint Solution)

Let S = (Lab,E, F,(D,C),t, ) be a distributive dataflow system. Then

mop(.S) = fix(Pg)

o by showing that ®g(mop(S)) = mop(S) ...
(see [Nielson/Nielson/Hankin 2005, p. 81])

o ... and using mop(S) C fix(®g) (Theorem 20.1)
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© Diplomarbeit/Master Thesis
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Model Checking Microcontroller Assembly Code

@ Motivation: microcontrollers frequently employed in embedded
Systems
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Model Checking Microcontroller Assembly Code

@ Motivation: microcontrollers frequently employed in embedded
Systems

o Embedded systems often safety—critical (cars, planes, medical
devices, ...)

o Exhaustive testing generally impossible (uncertain environments,
huge state spaces, ...)
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Model Checking Microcontroller Assembly Code

@ Motivation: microcontrollers frequently employed in embedded
Systems

o Embedded systems often safety—critical (cars, planes, medical
devices, ...)

o Exhaustive testing generally impossible (uncertain environments,
huge state spaces, ...)
—> Formal reasoning methods
?
@ Here: Model Checking system |= specification
system: (semantics of) assembly code = labeled transition

System
specification: formula of some temporal logic

@ never two processes in critical section:
AG —\(critl A Critg)

o every request will be answered before timeout:
AG (req = - timeout U answer)
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The [MC]Jsquare Tool

[mc]square
formula parser formula
l | model
cfg static analyzer state space checker
elf file preprocessor assembly simulator
program
C file C file
“l ] counterexample
e generator result
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Current State

@ Currently supported microprocessors:

o Atmel ATmega 16
o Infineon XC167
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Current State

@ Currently supported microprocessors:

o Atmel ATmega 16
o Infineon XC167

@ State—space generator written by hand for each microprocessor

@ Desirable: compiler—generating approach

microprocessor specification — state—space generator

o (Parts of) formal model available:
o Interrupt handler:

SREG[I] = 1 A TIMSK[TOIEO] = 1 A TIFR[TOVO] =1 —: 18 >
SREG[I] = 1 A GICR[INT2] = 1 A GIFR[INTF2] =1 —:36 > ...

¢ Instruction handler (here: ADD Ri,Rj at address q):

q :Ri:=Ri+Rj,SREG[Z] := (Ri +Rj = 0),SREG[C] :=...,...: ¢+ 2
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The Thesis

Goal:

@ Tool for automatic generation of (parts of) state-space generator
from microprocessor specification

o Embedded in [mc|square environment

@ Support of state-space abstraction techniques (“delayed
nondeterminism”)

@ Case study: Motorola ARM 7
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The Thesis

Goal:

@ Tool for automatic generation of (parts of) state-space generator
from microprocessor specification

o Embedded in [mc|square environment

@ Support of state-space abstraction techniques (“delayed
nondeterminism”)

@ Case study: Motorola ARM 7
Desirable prerequesites:
e Formal Methods for Embedded Systems [Kowalewski]
@ Model Checking [Katoen, Thomas]
o Compiler Construction [Indermark, Noll|
°

Semantics and Verification of Software [Noll]
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The Thesis

Goal:

@ Tool for automatic generation of (parts of) state-space generator
from microprocessor specification

o Embedded in [mc|square environment

@ Support of state-space abstraction techniques (“delayed
nondeterminism”)

@ Case study: Motorola ARM 7
Desirable prerequesites:
e Formal Methods for Embedded Systems [Kowalewski]
@ Model Checking [Katoen, Thomas]
o Compiler Construction [Indermark, Noll|
o Semantics and Verification of Software [Noll]
Contact:
@ Bastian Schlich (Inf. 11, schlich@cs.rwth-aachen.de)
@ Thomas Noll (Inf. 2, noll@cs.rwth-aachen.de)
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@ Evaluation of the Course
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