

Semantics and Verification of Software

Lecture 20: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw/>

Summer semester 2007

- 1 Repetition: Fixpoint and MOP Solution
- 2 MOP vs. Fixpoint Solution
- 3 Diplomarbeit/Master Thesis
- 4 Evaluation of the Course

Just as in the denotational semantics of `while` loops, the equation system determines a functional whose fixpoints are the solutions of the equation system.

Definition (Dataflow functional)

The equation system of a dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ induces a **functional**

$$\Phi_S : D^n \rightarrow D^n : (d_{l_1}, \dots, d_{l_n}) \mapsto (d'_{l_1}, \dots, d'_{l_n})$$

where $Lab = \{l_1, \dots, l_n\}$ and

$$d'_{l_i} := \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l_i) \in F\} & \text{otherwise} \end{cases}$$

Remarks:

- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice satisfying ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Every transfer function φ_l **monotonic** in D
 $\implies \Phi_S$ **monotonic** in D^n
- Thus the **fixpoint is effectively computable** by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

- If maximal length of chains in D is m
 \implies maximal length of chains in D^n is $m \cdot n$
 \implies fixpoint iteration requires at most $m \cdot n$ steps

- Other **solution method** for dataflow systems
- MOP = **Meet Over all Paths**
- Analysis information for block $B^l :=$
least upper bound over all paths leading to l

Definition (Paths)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $l \in Lab$, the set of **paths up to l** is given by

$$\text{Path}(l) := \{[l_1, \dots, l_{k-1}] \mid k \geq 1, l_1 \in E, \\ (l_i, l_{i+1}) \in F \text{ for every } 1 \leq i \leq k, l_k = l\}.$$

For a path $p = [l_1, \dots, l_{k-1}] \in \text{Path}(l)$, we define the **transfer function** $\varphi_p : D \rightarrow D$ by

$$\varphi_p := \varphi_{l_{k-1}} \circ \dots \circ \varphi_{l_1} \circ \text{id}_D$$

(so that $\varphi_{[]} = \text{id}_D$).

Definition (MOP solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $Lab = \{l_1, \dots, l_n\}$. The **MOP solution** for S is determined by

$$\mathsf{mop}(S) := (\mathsf{mop}(l_1), \dots, \mathsf{mop}(l_n)) \in D^n$$

where, for every $l \in Lab$,

$$\mathsf{mop}(l) := \bigsqcup \{\varphi_p(\iota) \mid p \in Path(l)\}.$$

Remark:

- $Path(l)$ is generally infinite

⇒ not clear how to compute $\mathsf{mop}(l)$

- In fact: MOP solution generally undecidable (later)

Theorem (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of **Modified Post Correspondence Problem**:

Let Γ be some alphabet, $n \in \mathbb{N}$, and $u_1, \dots, u_n, v_1, \dots, v_n \in \Gamma^+$.

Does there exist $i_1, \dots, i_m \in \{1, \dots, n\}$ with $m \geq 1$ and $i_1 = 1$ such that $u_{i_1}u_{i_2} \dots u_{i_m} = v_{i_1}v_{i_2} \dots v_{i_m}$?

(on the board)

1 Repetition: Fixpoint and MOP Solution

2 MOP vs. Fixpoint Solution

3 Diplomarbeit/Master Thesis

4 Evaluation of the Course

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. Then

$$\text{mop}(S) \sqsubseteq \text{fix}(\Phi_S)$$

Proof.

on the board

The next example shows that both solutions can indeed be different.

MOP vs. Fixpoint Solution I

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. Then

$$\text{mop}(S) \sqsubseteq \text{fix}(\Phi_S)$$

Proof.

on the board

The next example shows that both solutions can indeed be different.

MOP vs. Fixpoint Solution I

Theorem 20.1 (MOP vs. Fixpoint Solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. Then

$$\text{mop}(S) \sqsubseteq \text{fix}(\Phi_S)$$

Proof.

on the board

The next example shows that both solutions can indeed be different.

MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

```
c := if [z > 0]1 then
    [x := 2;]2
    [y := 3;]3
  else
    [x := 3;]4
    [y := 2;]5
  [z := x+y;]6
  [...]7
```

Transfer functions (for

$\delta = (\delta(x), \delta(y), \delta(z)) \in D$):

$$\varphi_1((a, b, c)) = (a, b, c)$$

$$\varphi_2((a, b, c)) = (2, b, c)$$

$$\varphi_3((a, b, c)) = (a, 3, c)$$

$$\varphi_4((a, b, c)) = (3, b, c)$$

$$\varphi_5((a, b, c)) = (a, 2, c)$$

$$\varphi_6((a, b, c)) = (a, b, a+b)$$

① Fixpoint solution:

$$CP_1 = \iota = (\top, \top, \top)$$

$$CP_2 = \varphi_1(CP_1) = (\top, \top, \top)$$

$$CP_3 = \varphi_2(CP_2) = (2, \top, \top)$$

$$CP_4 = \varphi_1(CP_1) = (\top, \top, \top)$$

$$CP_5 = \varphi_2(CP_2) = (3, \top, \top)$$

$$CP_6 = \varphi_3(CP_3) \sqcup \varphi_5(CP_5) = (2, 3, \top) \sqcup (3, 2, \top) = (\top, \top, \top)$$

$$CP_7 = \varphi_6(CP_6) = (\top, \top, \top)$$

② MOP solution:

$$mop(7) = \varphi_{[1,2,3,6]}(\top, \top, \top) \sqcup$$

$$\varphi_{[1,4,5,6]}(\top, \top, \top)$$

$$= (2, 3, 5) \sqcup (3, 2, 5)$$

$$= (\top, \top, 5)$$

Example 20.2 (Constant Propagation)

```
c := if [z > 0]1 then
    [x := 2;]2
    [y := 3;]3
  else
    [x := 3;]4
    [y := 2;]5
  [z := x+y;]6
  [...]7
```

Transfer functions (for

$\delta = (\delta(x), \delta(y), \delta(z)) \in D$):

$$\varphi_1((a, b, c)) = (a, b, c)$$

$$\varphi_2((a, b, c)) = (2, b, c)$$

$$\varphi_3((a, b, c)) = (a, 3, c)$$

$$\varphi_4((a, b, c)) = (3, b, c)$$

$$\varphi_5((a, b, c)) = (a, 2, c)$$

$$\varphi_6((a, b, c)) = (a, b, a+b)$$

① Fixpoint solution:

$$CP_1 = \iota = (\top, \top, \top)$$

$$CP_2 = \varphi_1(CP_1) = (\top, \top, \top)$$

$$CP_3 = \varphi_2(CP_2) = (2, \top, \top)$$

$$CP_4 = \varphi_1(CP_1) = (\top, \top, \top)$$

$$CP_5 = \varphi_2(CP_2) = (3, \top, \top)$$

$$CP_6 = \varphi_3(CP_3) \sqcup \varphi_5(CP_5) = (2, 3, \top) \sqcup (3, 2, \top) = (\top, \top, \top)$$

$$CP_7 = \varphi_6(CP_6) = (\top, \top, \top)$$

② MOP solution:

$$mop(7) = \varphi_{[1,2,3,6]}(\top, \top, \top) \sqcup$$

$$\varphi_{[1,4,5,6]}(\top, \top, \top)$$

$$= (2, 3, 5) \sqcup (3, 2, 5)$$

$$= (\top, \top, 5)$$

MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

```
c := if [z > 0]1 then
    [x := 2;]2
    [y := 3;]3
  else
    [x := 3;]4
    [y := 2;]5
    [z := x+y;]6
  [...]7
```

Transfer functions (for

$\delta = (\delta(x), \delta(y), \delta(z)) \in D$):

$$\varphi_1((a, b, c)) = (a, b, c)$$

$$\varphi_2((a, b, c)) = (2, b, c)$$

$$\varphi_3((a, b, c)) = (a, 3, c)$$

$$\varphi_4((a, b, c)) = (3, b, c)$$

$$\varphi_5((a, b, c)) = (a, 2, c)$$

$$\varphi_6((a, b, c)) = (a, b, a+b)$$

① Fixpoint solution:

$$CP_1 = \iota \quad = (\top, \top, \top)$$

$$CP_2 = \varphi_1(CP_1) \quad = (\top, \top, \top)$$

$$CP_3 = \varphi_2(CP_2) \quad = (2, \top, \top)$$

$$CP_4 = \varphi_1(CP_1) \quad = (\top, \top, \top)$$

$$CP_5 = \varphi_2(CP_2) \quad = (3, \top, \top)$$

$$CP_6 = \varphi_3(CP_3) \sqcup \varphi_5(CP_5) \quad = (2, 3, \top) \sqcup (3, 2, \top) = (\top, \top, \top)$$

$$CP_7 = \varphi_6(CP_6) \quad = (\top, \top, \top)$$

② MOP solution:

$$mop(7) = \varphi_{[1,2,3,6]}(\top, \top, \top) \sqcup$$

$$\varphi_{[1,4,5,6]}(\top, \top, \top)$$

$$= (2, 3, 5) \sqcup (3, 2, 5)$$

$$= (\top, \top, 5)$$

MOP vs. Fixpoint Solution II

Example 20.2 (Constant Propagation)

```
c := if [z > 0]1 then
    [x := 2;]2
    [y := 3;]3
  else
    [x := 3;]4
    [y := 2;]5
    [z := x+y;]6
  [...]7
```

Transfer functions (for

$\delta = (\delta(x), \delta(y), \delta(z)) \in D$):

$$\varphi_1((a, b, c)) = (a, b, c)$$

$$\varphi_2((a, b, c)) = (2, b, c)$$

$$\varphi_3((a, b, c)) = (a, 3, c)$$

$$\varphi_4((a, b, c)) = (3, b, c)$$

$$\varphi_5((a, b, c)) = (a, 2, c)$$

$$\varphi_6((a, b, c)) = (a, b, a+b)$$

① Fixpoint solution:

$$CP_1 = \iota = (\top, \top, \top)$$

$$CP_2 = \varphi_1(CP_1) = (\top, \top, \top)$$

$$CP_3 = \varphi_2(CP_2) = (2, \top, \top)$$

$$CP_4 = \varphi_1(CP_1) = (\top, \top, \top)$$

$$CP_5 = \varphi_2(CP_2) = (3, \top, \top)$$

$$CP_6 = \varphi_3(CP_3) \sqcup \varphi_5(CP_5) = (2, 3, \top) \sqcup (3, 2, \top) = (\top, \top, \top)$$

$$CP_7 = \varphi_6(CP_6) = (\top, \top, \top)$$

② MOP solution:

$$mop(7) = \varphi_{[1,2,3,6]}(\top, \top, \top) \sqcup$$

$$\varphi_{[1,4,5,6]}(\top, \top, \top)$$

$$= (2, 3, 5) \sqcup (3, 2, 5)$$

$$= (\top, \top, 5)$$

A sufficient criterion for the coincidence of MOP and Fixpoint Solution is the distributivity of the transfer functions.

Definition 20.3 (Distributivity)

- Let (D, \sqsubseteq) and (D', \sqsubseteq') be complete lattices, and let $F : D \rightarrow D'$. F is called **distributive** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$F(d_1 \sqcup_D d_2) = F(d_1) \sqcup_{D'} F(d_2).$$

- A dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ is called **distributive** if every $\varphi_l : D \rightarrow D$ is so.

A sufficient criterion for the coincidence of MOP and Fixpoint Solution is the distributivity of the transfer functions.

Definition 20.3 (Distributivity)

- Let (D, \sqsubseteq) and (D', \sqsubseteq') be complete lattices, and let $F : D \rightarrow D'$. F is called **distributive** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$F(d_1 \sqcup_D d_2) = F(d_1) \sqcup_{D'} F(d_2).$$

- A dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ is called **distributive** if every $\varphi_l : D \rightarrow D$ is so.

Example 20.4

① The Available Expressions dataflow system is distributive:

$$\begin{aligned}\varphi_l(A_1 \sqcup A_2) &= ((A_1 \cap A_2) \setminus \text{kill}_{\text{AE}}(B^l)) \cup \text{gen}_{\text{AE}}(B^l) \\ &= ((A_1 \setminus \text{kill}_{\text{AE}}(B^l)) \cup \text{gen}_{\text{AE}}(B^l)) \cap \\ &\quad ((A_2 \setminus \text{kill}_{\text{AE}}(B^l)) \cup \text{gen}_{\text{AE}}(B^l)) \\ &= \varphi_l(A_1) \sqcup \varphi_l(A_2)\end{aligned}$$

② The Live Variables dataflow system is distributive (similar)
③ The Constant Propagation dataflow system is not distributive:

$$\begin{aligned}(\top, \top, \top) &= \varphi_{z:=x+y}((2, 3, \top) \sqcup (3, 2, \top)) \\ &\neq \varphi_{z:=x+y}((2, 3, \top)) \sqcup \varphi_{z:=x+y}((3, 2, \top)) \\ &= (\top, \top, 5)\end{aligned}$$

Example 20.4

① The Available Expressions dataflow system is distributive:

$$\begin{aligned}\varphi_l(A_1 \sqcup A_2) &= ((A_1 \cap A_2) \setminus \text{kill}_{\text{AE}}(B^l)) \cup \text{gen}_{\text{AE}}(B^l) \\ &= ((A_1 \setminus \text{kill}_{\text{AE}}(B^l)) \cup \text{gen}_{\text{AE}}(B^l)) \cap \\ &\quad ((A_2 \setminus \text{kill}_{\text{AE}}(B^l)) \cup \text{gen}_{\text{AE}}(B^l)) \\ &= \varphi_l(A_1) \sqcup \varphi_l(A_2)\end{aligned}$$

② The Live Variables dataflow system is distributive (similar)
③ The Constant Propagation dataflow system is not distributive:

$$\begin{aligned}(\top, \top, \top) &= \varphi_{z:=x+y}((2, 3, \top) \sqcup (3, 2, \top)) \\ &\neq \varphi_{z:=x+y}((2, 3, \top)) \sqcup \varphi_{z:=x+y}((3, 2, \top)) \\ &= (\top, \top, 5)\end{aligned}$$

Example 20.4

- ➊ The Available Expressions dataflow system is distributive:

$$\begin{aligned}\varphi_l(A_1 \sqcup A_2) &= ((A_1 \cap A_2) \setminus \text{kill}_{\text{AE}}(B^l)) \cup \text{gen}_{\text{AE}}(B^l) \\ &= ((A_1 \setminus \text{kill}_{\text{AE}}(B^l)) \cup \text{gen}_{\text{AE}}(B^l)) \cap \\ &\quad ((A_2 \setminus \text{kill}_{\text{AE}}(B^l)) \cup \text{gen}_{\text{AE}}(B^l)) \\ &= \varphi_l(A_1) \sqcup \varphi_l(A_2)\end{aligned}$$

- ➋ The Live Variables dataflow system is distributive (similar)
- ➌ The Constant Propagation dataflow system is not distributive:

$$\begin{aligned}(\top, \top, \top) &= \varphi_{z:=x+y}((2, 3, \top) \sqcup (3, 2, \top)) \\ &\neq \varphi_{z:=x+y}((2, 3, \top)) \sqcup \varphi_{z:=x+y}((3, 2, \top)) \\ &= (\top, \top, 5)\end{aligned}$$

Theorem 20.5 (MOP vs. Fixpoint Solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a distributive dataflow system. Then

$$\text{mop}(S) = \text{fix}(\Phi_S)$$

Proof.

- by showing that $\Phi_S(\text{mop}(S)) = \text{mop}(S) \dots$
(see [Nielson/Nielson/Hankin 2005, p. 81])
- ... and using $\text{mop}(S) \sqsubseteq \text{fix}(\Phi_S)$ (Theorem 20.1)

Theorem 20.5 (MOP vs. Fixpoint Solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a distributive dataflow system. Then

$$\text{mop}(S) = \text{fix}(\Phi_S)$$

Proof.

- by showing that $\Phi_S(\text{mop}(S)) = \text{mop}(S)$...
(see [Nielson/Nielson/Hankin 2005, p. 81])
- ... and using $\text{mop}(S) \sqsubseteq \text{fix}(\Phi_S)$ (Theorem 20.1)

- 1 Repetition: Fixpoint and MOP Solution
- 2 MOP vs. Fixpoint Solution
- 3 Diplomarbeit/Master Thesis
- 4 Evaluation of the Course

- Motivation: microcontrollers frequently employed in **embedded systems**
- Embedded systems often **safety-critical** (cars, planes, medical devices, ...)
- Exhaustive **testing** generally impossible (uncertain environments, huge state spaces, ...)

⇒ Formal reasoning methods

- Here: **Model Checking** system \models specification
 - system: (semantics of) assembly code \Rightarrow labeled transition system
 - specification: formula of some temporal logic
 - never two processes in critical section:
 $AG \neg(crit_1 \wedge crit_2)$
 - every request will be answered before timeout:
 $AG (req \Rightarrow \neg \text{timeout} \cup \text{answer})$

- Motivation: microcontrollers frequently employed in **embedded systems**
- Embedded systems often **safety-critical** (cars, planes, medical devices, ...)
- Exhaustive testing generally impossible (uncertain environments, huge state spaces, ...)

⇒ Formal reasoning methods

- Here: Model Checking system \models specification
 - system: (semantics of) assembly code \Rightarrow labeled transition system
 - specification: formula of some temporal logic
 - never two processes in critical section:
 $AG \neg(crit_1 \wedge crit_2)$
 - every request will be answered before timeout:
 $AG (req \Rightarrow \neg \text{timeout} \cup \text{answer})$

- Motivation: microcontrollers frequently employed in **embedded systems**
- Embedded systems often **safety-critical** (cars, planes, medical devices, ...)
- Exhaustive **testing** generally impossible (uncertain environments, huge state spaces, ...)

⇒ Formal reasoning methods

- Here: Model Checking system \models specification
 - system: (semantics of) assembly code \Rightarrow labeled transition system
 - specification: formula of some temporal logic
 - never two processes in critical section:
 $AG \neg(crit_1 \wedge crit_2)$
 - every request will be answered before timeout:
 $AG (req \Rightarrow \neg \text{timeout} \cup \text{answer})$

- Motivation: microcontrollers frequently employed in **embedded systems**
- Embedded systems often **safety-critical** (cars, planes, medical devices, ...)
- Exhaustive **testing** generally impossible (uncertain environments, huge state spaces, ...)

⇒ **Formal reasoning methods**

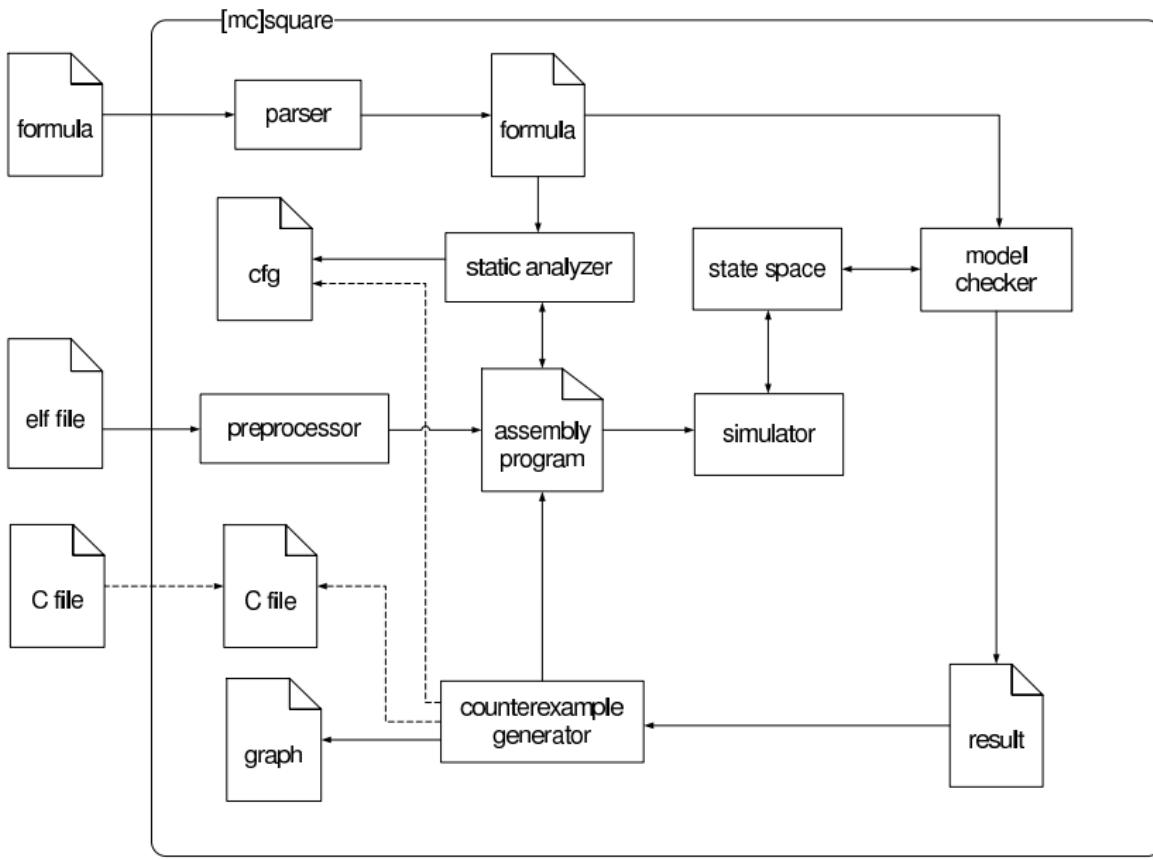
- Here: Model Checking system \models specification
 - system: (semantics of) assembly code \Rightarrow labeled transition system
 - specification: formula of some temporal logic
 - never two processes in critical section:
 $AG \neg(crit_1 \wedge crit_2)$
 - every request will be answered before timeout:
 $AG (req \Rightarrow \neg \text{timeout} \cup \text{answer})$

- Motivation: microcontrollers frequently employed in **embedded systems**
- Embedded systems often **safety-critical** (cars, planes, medical devices, ...)
- Exhaustive **testing** generally impossible (uncertain environments, huge state spaces, ...)

⇒ **Formal reasoning methods**

- Here: **Model Checking** system $\models^?$ specification
 - system: (semantics of) assembly code ⇒ labeled transition system
 - specification: formula of some temporal logic
 - never two processes in critical section:
 $AG \neg(crit_1 \wedge crit_2)$
 - every request will be answered before timeout:
 $AG (req \implies \neg \text{timeout} \cup \text{answer})$

The [MC]square Tool



- Currently supported microprocessors:
 - Atmel ATmega 16
 - Infineon XC167
- State-space generator written by hand for each microprocessor
- Desirable: compiler-generating approach

microprocessor specification \rightarrow state-space generator

- (Parts of) formal model available:
 - Interrupt handler:

$$\begin{aligned} \text{SREG[I]} = 1 \wedge \text{TIMSK[TOIE0]} = 1 \wedge \text{TIFR[TOVO]} = 1 \rightarrow: 18 > \\ \text{SREG[I]} = 1 \wedge \text{GICR[INT2]} = 1 \wedge \text{GIFR[INTF2]} = 1 \rightarrow: 36 > \dots \end{aligned}$$

- Instruction handler (here: ADD Ri, Rj at address q):

$$q : R_i := R_i + R_j, \text{SREG[Z]} := (R_i + R_j = 0), \text{SREG[C]} := \dots, \dots : q + 2$$

- Currently supported microprocessors:
 - Atmel ATmega 16
 - Infineon XC167
- State-space generator written **by hand** for each microprocessor
- Desirable: **compiler-generating approach**

microprocessor specification \rightarrow state-space generator

- (Parts of) **formal model** available:
 - Interrupt handler:

$$\begin{aligned} \text{SREG[I]} = 1 \wedge \text{TIMSK[TOIE0]} = 1 \wedge \text{TIFR[TOVO]} = 1 \rightarrow: 18 > \\ \text{SREG[I]} = 1 \wedge \text{GICR[INT2]} = 1 \wedge \text{GIFR[INTF2]} = 1 \rightarrow: 36 > \dots \end{aligned}$$

- Instruction handler (here: ADD Ri, Rj at address q):

$$q : R_i := R_i + R_j, \text{SREG[Z]} := (R_i + R_j = 0), \text{SREG[C]} := \dots, \dots : q + 2$$

- Currently supported microprocessors:
 - Atmel ATmega 16
 - Infineon XC167
- State-space generator written **by hand** for each microprocessor
- Desirable: **compiler-generating approach**
microprocessor specification \rightarrow state-space generator

- (Parts of) **formal model** available:
 - Interrupt handler:

$$\begin{aligned} \text{SREG[I]} = 1 \wedge \text{TIMSK[TOIE0]} = 1 \wedge \text{TIFR[TOVO]} = 1 \rightarrow: 18 > \\ \text{SREG[I]} = 1 \wedge \text{GICR[INT2]} = 1 \wedge \text{GIFR[INTF2]} = 1 \rightarrow: 36 > \dots \end{aligned}$$

- Instruction handler (here: ADD Ri, Rj at address q):
 $q : R_i := R_i + R_j, \text{SREG[Z]} := (R_i + R_j = 0), \text{SREG[C]} := \dots, \dots : q + 2$

- Currently supported microprocessors:
 - Atmel ATmega 16
 - Infineon XC167
- State-space generator written **by hand** for each microprocessor
- Desirable: **compiler-generating approach**

microprocessor specification \rightarrow state-space generator

- (Parts of) **formal model** available:
 - Interrupt handler:

$$\begin{aligned} \text{SREG[I]} = 1 \wedge \text{TIMSK[TOIE0]} = 1 \wedge \text{TIFR[TOVO]} = 1 \rightarrow: 18 > \\ \text{SREG[I]} = 1 \wedge \text{GICR[INT2]} = 1 \wedge \text{GIFR[INTF2]} = 1 \rightarrow: 36 > \dots \end{aligned}$$

- Instruction handler (here: ADD Ri, Rj at address q):

$$q : R_i := R_i + R_j, \text{SREG[Z]} := (R_i + R_j = 0), \text{SREG[C]} := \dots, \dots : q + 2$$

Goal:

- Tool for **automatic generation** of (parts of) state-space generator from microprocessor specification
- Embedded in **[mc]square** environment
- Support of **state-space abstraction techniques** (“delayed nondeterminism”)
- Case study: **Motorola ARM 7**

Desirable prerequisites:

- Formal Methods for Embedded Systems [Kowalewski]
- Model Checking [Katoen, Thomas]
- Compiler Construction [Indermark, Noll]
- Semantics and Verification of Software [Noll]

Contact:

- Bastian Schlich (Inf. 11, schlich@cs.rwth-aachen.de)
- Thomas Noll (Inf. 2, noll@cs.rwth-aachen.de)

Goal:

- Tool for **automatic generation** of (parts of) state-space generator from microprocessor specification
- Embedded in **[mc]square** environment
- Support of **state-space abstraction techniques** (“delayed nondeterminism”)
- Case study: **Motorola ARM 7**

Desirable prerequisites:

- Formal Methods for Embedded Systems [Kowalewski]
- Model Checking [Katoen, Thomas]
- Compiler Construction [Indermark, Noll]
- Semantics and Verification of Software [Noll]

Contact:

- Bastian Schlich (Inf. 11, schlich@cs.rwth-aachen.de)
- Thomas Noll (Inf. 2, noll@cs.rwth-aachen.de)

Goal:

- Tool for **automatic generation** of (parts of) state-space generator from microprocessor specification
- Embedded in **[mc]square** environment
- Support of **state-space abstraction techniques** (“delayed nondeterminism”)
- Case study: **Motorola ARM 7**

Desirable prerequisites:

- Formal Methods for Embedded Systems [Kowalewski]
- Model Checking [Katoen, Thomas]
- Compiler Construction [Indermark, Noll]
- Semantics and Verification of Software [Noll]

Contact:

- Bastian Schlich (Inf. 11, schlich@cs.rwth-aachen.de)
- Thomas Noll (Inf. 2, noll@cs.rwth-aachen.de)

- 1 Repetition: Fixpoint and MOP Solution
- 2 MOP vs. Fixpoint Solution
- 3 Diplomarbeit/Master Thesis
- 4 Evaluation of the Course