
Semantics and Verification of Software

Lecture 21: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Outline

1 Interprocedural Dataflow Analysis

2 Intraprocedural vs. Interprocedural Analysis

3 The MVP Solution

Semantics and Verification of Software Summer semester 2007 2

Overview

So far: only intraprocedural analyses (i.e., without user–defined
functions or procedures)

Now: interprocedural dataflow analysis

Complications:

correct matching between calls and returns
parameter passing (aliasing effects)

Here: simple setting

only top–level declarations, no blocks or nested declarations
mutually recursive procedures
one call–by–value and one call–by–result parameter
extension to multiple and call–by–value–result parameters
straightforward

Semantics and Verification of Software Summer semester 2007 3

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context–free grammar:

p ::= proc [P (val x, res y)]ln is c [end]lx;p | ε ∈ PDec

c ::= [skip]l | [x := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [call P (a, x)]lc
lr
∈ Cmd

All labels and procedure names in program p c distinct

In proc [P (val x, res y)]ln is c [end]lx , ln (lx) refers to the entry
(exit) of P

In [call P (a, x)]lclr , lc (lr) refers to the call of (return from) P

Static scoping of procedures

First parameter call–by–value, second call–by–result

Semantics and Verification of Software Summer semester 2007 4

An Example

(extension: multiple call-by–value parameters)

Example 21.1 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

Semantics and Verification of Software Summer semester 2007 5

Procedure Flow Graphs

Definition 21.2 (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:

init([call P (a, x)]lclr) := lc
final([call P (a, x)]lclr) := {lr}

flow([call P (a, x)]lc
lr

) := {(lc; ln), (lx; lr)}

init(proc [P (val x, res y)]ln is c [end]lx) := ln
final(proc [P (val x, res y)]ln is c [end]lx) := {lx}
flow(proc [P (val x, res y)]ln is c [end]lx) := {(ln, init(c))} ∪

{(l, lx) | l ∈ final(c)}

if proc [P (val x, res y)]ln is c [end]lx is in p.
Moreover the interprocural flow of a program p c is defined by

IF := {(lc, ln, lx, lr) | p c contains [call P (a, x)]lc
lr

and

proc [P (val x, res y)]ln is c [end]lx} ⊆ Lab
4

Semantics and Verification of Software Summer semester 2007 6

Procedure Flow Graphs

Example 21.3 (Fibonacci numbers)

Flow graph of

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

(on the board)

Here IF = {(9, 1, 8, 10), (4, 1, 8, 5), (6, 1, 8, 7)}

Semantics and Verification of Software Summer semester 2007 7

Outline

1 Interprocedural Dataflow Analysis

2 Intraprocedural vs. Interprocedural Analysis

3 The MVP Solution

Semantics and Verification of Software Summer semester 2007 8

Naive Formulation I

Attempt: directly transfer techniques from intraprocedural
analysis
=⇒ treat (lc; ln) like (lc, ln) and (lx; lr) like (lx, lr)
Given: dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)
For each procedure call [call P (a, x)]lclr :
transfer functions ϕlc , ϕlr : D → D (definition later)
For each procedure declaration
proc [P (val x, res y)]ln is c [end]lx :
transfer functions ϕln , ϕlx : D → D (definition later)
Induces equation system

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F or (l′; l) ∈ F} otherwise
Problem: procedure calls (lc; ln) and procedure returns (lx; lr)
treated like goto’s
=⇒ nesting of calls and returns ignored
=⇒ too many paths
=⇒ analysis information imprecise (but still correct)

Semantics and Verification of Software Summer semester 2007 9

Naive Formulation II

Example 21.4 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

“Valid” path:
[9, 1, 2, 3, 8, 10]

“Invalid” path:
[9, 1, 2, 4, 1, 2, 3, 8, 10]

Semantics and Verification of Software Summer semester 2007 10

Outline

1 Interprocedural Dataflow Analysis

2 Intraprocedural vs. Interprocedural Analysis

3 The MVP Solution

Semantics and Verification of Software Summer semester 2007 11

Valid Paths I

Consider only paths with correct nesting of procedure calls and
returns

Will yield MVP solution (Meet over all Valid Paths)

Definition 21.5 (Valid paths I)

Given a dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ) and l1, l2 ∈ Lab,
the set of valid paths from l1 to l2 is generated by the nonterminal
symbol P [l1, l2] according to the following productions:

P [l1, l2] → l1 whenever l1 = l2
P [l1, l3] → l1, P [l2, l3] whenever (l1, l2) ∈ F
P [lc, l] → lc, P [ln, lx], P [lr, l] whenever (lc, ln, lx, lr) ∈ IF

Semantics and Verification of Software Summer semester 2007 12

Valid Paths II

Example 21.6 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

Grammar for P [10, 11]:
on the board

Thus

[9, 1, 2, 3, 8, 10] ∈ L(P [10, 11])

but

[9, 1, 2, 4, 1, 2, 3, 8, 10] /∈ L(P [10, 11])

Semantics and Verification of Software Summer semester 2007 13

The MVP Solution I

Definition 21.7 (Valid paths II)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of valid paths up to l is given by

VPath(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E, lk = l,
[l1, . . . , lk] prefix of a valid path}.

For a path p = [l1, . . . , lk−1] ∈ VPath(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer semester 2007 14

The MVP Solution II

Definition 21.8 (MVP solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MVP solution for S is determined by

mvp(S) := (mvp(l1), . . . ,mvp(ln)) ∈ Dn

where, for every l ∈ Lab,
mvp(l) :=

⊔

{ϕp(ι) | p ∈ VPath(l)}.

Corollary 21.9

1 mvp(S) ⊑ mop(S)

2 The MVP solution is undecidable.

Proof.
1 since VPath(l) ⊆ Path(l) for every l ∈ Lab

2 by undecidability of MOP solution

Semantics and Verification of Software Summer semester 2007 15

	Interprocedural Dataflow Analysis
	Intraprocedural vs. Interprocedural Analysis
	The MVP Solution

