Semantics and Verification of Software

Lecture 21: Dataflow Analysis

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Interprocedural Dataflow Analysis

Rm Semantics and Verification of Software Summer semester 2007

Overview

©

©

So far: only intraprocedural analyses (i.e., without user—defined
functions or procedures)

Now: interprocedural dataflow analysis

Complications:

o
o

correct matching between calls and returns
parameter passing (aliasing effects)

Here: simple setting
o only top-level declarations, no blocks or nested declarations

¢ ¢ ¢

mutually recursive procedures

one call-by—value and one call-by-result parameter
extension to multiple and call-by—value-result parameters
straightforward

Semantics and Verification of Software Summer semester 2007

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={pP,Q,...} P
Procedure declarations PDec P
Commands (statements) Cmd c

Context—free grammar:
p = proc [P(val z,res y)]'" is ¢ [end]'s;p | € € PDec
c = [skip]' | [z :=a]' | e1;c2 | if [b]' then c; else ¢ |
while [b]' do ¢ | [call P(a,z)]° € Cmd

All labels and procedure names in program p ¢ distinct

In proc [P(val z,res y)]'" is c [end]', I, (I,) refers to the entry
(exit) of P

In [call P(a,x)]ﬁ:, l. (1) refers to the call of (return from) P
Static scoping of procedures

©

First parameter call-by—value, second call-by-result

Rm Semantics and Verification of Software Summer semester 2007

An Example

(extension: multiple call-by—value parameters)

Example 21.1 (Fibonacci numbers)

proc [Fib(val x, y, res z)]! is
if [x<2]? then
2 = i’
else
[call Fib(x-1, y, 2)]z;
[call Fib(x-2, z, 2)]%;
[end]?;
[call Fib(5, 0, v)]3,

m Semantics and Verification of Software Summer semester 2007

Procedure Flow Graphs

Definition 21.2 (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:
init([call P(a,z)]°) = L
final([call P(a,z)]¢) = {l-}
flow([call P(a,)];°) = {(leiln), (lz; 1)}

init(proc [P(val x,res y)]'" is ¢ [end]™) :
final(proc [P(val z,res y)]" is ¢ [end]") :
flow(proc [P(val z,res y)]'" is ¢ [end]") :

ln
{l:}

{(In, init(c))} U
{(1,1;) | L € final(c)}

if proc [P(val z,res y)]'" is c [end]" is in p.
Moreover the interprocural flow of a program pc is defined by

IF := {(l¢,In,lz,1) | pc contains [call P(a,z)];° and
proc [P(val z,res y)]" is c [end]’»} C Lab*

m Semantics and Verification of Software Summer semester 2007

Procedure Flow Graphs

Example 21.3 (Fibonacci numbers)

Flow graph of

proc [Fib(val x, y, res z)]! is
if [x<2]? then
[z := y+1]?
else
[call Fib(x-1, y, 2)]4;
[call Fib(x-2, z, 2)]%;
[end]?;
[call Fib(5, 0, v)]3

(on the board)

Here IF = {(9,1,8,10), (4,1,8,5),(6,1,8,7)}

m' Semantics and Verification of Software

Summer semester 2007

© Intraprocedural vs. Interprocedural Analysis

Rm Semantics and Verification of Software Summer semester 2007

Naive Formulation I

Attempt: directly transfer techniques from intraprocedural
analysis
= treat (I.;1,) like (I, 1) and (I3;1,) like (15, 1,)
Given: dataflow system S = (Lab, E, F,(D,C), ¢,)
For each procedure call [call P(a, z)];°:
transfer functions ¢y, ¢, : D — D (definition later)
For each procedure declaration
proc [P(val z,res y)]' is ¢ [end]’:
transfer functions ¢y, , ¢, : D — D (definition later)
Induces equation system
Al = {L iflel
LI{er(Aly) | (I',1) € For (I';l) € F} otherwise
Problem: procedure calls (I; 1) and procedure returns (I,;1,)
treated like goto’s
— nesting of calls and returns ignored
—> too many paths
— analysis information imprecise (but still correct)

m' Semantics and Verification of Software Summer semester 2007

Naive Formulation 11

Example 21.4 (Fibonacci numbers)

proc [Fib(val x, y, res z)]! is
if [x<2]? then

[z := y_,_1]3 o “Valid” path:
ellse [9,1,2,3,8,10]
[call Fib(x-1, vy, z)]g'; o “Invalid” path:
[8call Fib(x-2, z, 2)]%; [9,1,2,4,1,2,3,8,10]
[end]®;

[call Fib(5, 0, W]},

m Semantics and Verification of Software Summer semester 2007

© The MVP Solution

Rm Semantics and Verification of Software Summer semester 2007

Valid Paths I

@ Consider only paths with correct nesting of procedure calls and
returns

o Will yield MVP solution (Meet over all Valid Paths)

Definition 21.5 (Valid paths I)

Given a dataflow system S = (Lab, E, F,(D,C),,) and l3,ly € Lab,
the set of valid paths from I; to l» is generated by the nonterminal
symbol P[l1, 5] according to the following productions:

P[ll, 12] — ll whenever ll = 12
P[ll, l3] — ll, P[lz, l3] whenever (ll, l2) e F
Pll., 1] — I, Plln, 2], P[l,1] whenever (I¢,1,,1:,1.) € [F

m Semantics and Verification of Software Summer semester 2007

Valid Paths 11

Example 21.6 (Fibonacci numbers)

proc [Fib(val x, y, res z)|! is
if [x<2]? then

[z := y+1]3 Thus
else
[call Fib(x-1, vy, z)]z; [9,1,2,3,8,10] € L(P[10,11])
[call Fib(x-2, z, 2)]7;
[end]S; but

[call Fib(5, 0, W3,
[9,1,2,4,1,2,3,8,10] ¢ L(P[10,11])

Grammar for P[10,11]:
on the board

m Semantics and Verification of Software Summer semester 2007

The M VP Solution 1

Definition 21.7 (Valid paths II)

Let S = (Lab,E,F,(D,C),t,¢) be a dataflow system. For every
[€ Lab, the set of valid paths up to [is given by

VPath(l) :={[l1,...,lk—1] | k > 1,11 € E,l; =,
[l1,...,l;] prefix of a valid path}.

For a path p = [l1,...,lk—1] € VPath(l), we define the transfer function
¢op: D — D by
$p =i _,0...0p, 0idp

(so that ¢ = idp).

m Semantics and Verification of Software Summer semester 2007

The M VP Solution I1

Definition 21.8 (MVP solution)

Let S = (Lab,E,F,(D,C), ¢,) be a dataflow system where
Lab = {l1,...,l,}. The MVP solution for S is determined by
mvp(S) := (mvp(l1),...,mvp(l,)) € D"
where, for every [€ Lab,
mvp(l) := [{wp(2) | p € VPath(l)}.

Corollary 21.9

@ mvp(S) = mop(S)
Q The MVP solution is undecidable.

Proof.
Q since VPath(l) C Path(l) for every | € Lab
© by undecidability of MOP solution

m Semantics and Verification of Software Summer semester 2007

	Interprocedural Dataflow Analysis
	Intraprocedural vs. Interprocedural Analysis
	The MVP Solution

