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Overview

So far: only intraprocedural analyses (i.e., without user–defined
functions or procedures)

Now: interprocedural dataflow analysis

Complications:

correct matching between calls and returns
parameter passing (aliasing effects)

Here: simple setting

only top–level declarations, no blocks or nested declarations
mutually recursive procedures
one call–by–value and one call–by–result parameter
extension to multiple and call–by–value–result parameters
straightforward
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Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context–free grammar:

p ::= proc [P (val x, res y)]ln is c [end]lx;p | ε ∈ PDec

c ::= [skip]l | [x := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [call P (a, x)]lc
lr
∈ Cmd

All labels and procedure names in program p c distinct

In proc [P (val x, res y)]ln is c [end]lx , ln (lx) refers to the entry
(exit) of P

In [call P (a, x)]lclr , lc (lr) refers to the call of (return from) P

Static scoping of procedures

First parameter call–by–value, second call–by–result
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An Example

(extension: multiple call-by–value parameters)

Example 21.1 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910
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Procedure Flow Graphs

Definition 21.2 (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:

init([call P (a, x)]lclr ) := lc
final([call P (a, x)]lclr ) := {lr}

flow([call P (a, x)]lc
lr

) := {(lc; ln), (lx; lr)}

init(proc [P (val x, res y)]ln is c [end]lx) := ln
final(proc [P (val x, res y)]ln is c [end]lx) := {lx}
flow(proc [P (val x, res y)]ln is c [end]lx) := {(ln, init(c))} ∪

{(l, lx) | l ∈ final(c)}

if proc [P (val x, res y)]ln is c [end]lx is in p.
Moreover the interprocural flow of a program p c is defined by

IF := {(lc, ln, lx, lr) | p c contains [call P (a, x)]lc
lr

and

proc [P (val x, res y)]ln is c [end]lx} ⊆ Lab
4
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Procedure Flow Graphs

Example 21.3 (Fibonacci numbers)

Flow graph of

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

(on the board)

Here IF = {(9, 1, 8, 10), (4, 1, 8, 5), (6, 1, 8, 7)}
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Naive Formulation I

Attempt: directly transfer techniques from intraprocedural
analysis
=⇒ treat (lc; ln) like (lc, ln) and (lx; lr) like (lx, lr)
Given: dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ)
For each procedure call [call P (a, x)]lclr :
transfer functions ϕlc , ϕlr : D → D (definition later)
For each procedure declaration
proc [P (val x, res y)]ln is c [end]lx :
transfer functions ϕln , ϕlx : D → D (definition later)
Induces equation system

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F or (l′; l) ∈ F} otherwise
Problem: procedure calls (lc; ln) and procedure returns (lx; lr)
treated like goto’s
=⇒ nesting of calls and returns ignored
=⇒ too many paths
=⇒ analysis information imprecise (but still correct)
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Naive Formulation II

Example 21.4 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

“Valid” path:
[9, 1, 2, 3, 8, 10]

“Invalid” path:
[9, 1, 2, 4, 1, 2, 3, 8, 10]
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Valid Paths I

Consider only paths with correct nesting of procedure calls and
returns

Will yield MVP solution (Meet over all Valid Paths)

Definition 21.5 (Valid paths I)

Given a dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ) and l1, l2 ∈ Lab,
the set of valid paths from l1 to l2 is generated by the nonterminal
symbol P [l1, l2] according to the following productions:

P [l1, l2] → l1 whenever l1 = l2
P [l1, l3] → l1, P [l2, l3] whenever (l1, l2) ∈ F
P [lc, l] → lc, P [ln, lx], P [lr, l] whenever (lc, ln, lx, lr) ∈ IF
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Valid Paths II

Example 21.6 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

Grammar for P [10, 11]:
on the board

Thus

[9, 1, 2, 3, 8, 10] ∈ L(P [10, 11])

but

[9, 1, 2, 4, 1, 2, 3, 8, 10] /∈ L(P [10, 11])
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The MVP Solution I

Definition 21.7 (Valid paths II)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of valid paths up to l is given by

VPath(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E, lk = l,
[l1, . . . , lk] prefix of a valid path}.

For a path p = [l1, . . . , lk−1] ∈ VPath(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).
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The MVP Solution II

Definition 21.8 (MVP solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MVP solution for S is determined by

mvp(S) := (mvp(l1), . . . ,mvp(ln)) ∈ Dn

where, for every l ∈ Lab,
mvp(l) :=

⊔

{ϕp(ι) | p ∈ VPath(l)}.

Corollary 21.9

1 mvp(S) ⊑ mop(S)

2 The MVP solution is undecidable.

Proof.
1 since VPath(l) ⊆ Path(l) for every l ∈ Lab

2 by undecidability of MOP solution
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