Semantics and Verification of Software

Lecture 22: Dataflow Analysis

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Interprocedural Dataflow Analysis

Rm Semantics and Verification of Software Summer semester 2007

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={pP,Q,...} P
Procedure declarations PDec P
Commands (statements) Cmd c

Context—free grammar:
p = proc [P(val z,res y)]'" is ¢ [end]'s;p | € € PDec
c = [skip]' | [z :=a]' | e1;c2 | if [b]' then c; else ¢ |
while [b]' do ¢ | [call P(a,z)]° € Cmd

All labels and procedure names in program p ¢ distinct

In proc [P(val z,res y)]'" is c [end]', I, (I,) refers to the entry
(exit) of P

In [call P(a,x)]ﬁ:, l. (1) refers to the call of (return from) P
Static scoping of procedures

©

First parameter call-by—value, second call-by-result

Rm Semantics and Verification of Software Summer semester 2007

Procedure Flow Graphs

Definition (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:

init([call P(a,z)]) :
final([call P(a,2)];) :
flow([call P(a, x)]l“) :

le
{lr}
{Ue:ln), (la: 1)}

init(proc [P(val x,res y)]'" is ¢ [end]™) :
final(proc [P(val z,res y)]" is ¢ [end]") :
flow(proc [P(val z,res y)]'" is ¢ [end]") :

ln
{l:}

{(In, init(c))} U
{(1,1;) | L € final(c)}

if proc [P(val z,res y)]'" is c [end]" is in p.
Moreover the interprocural flow of a program pc is defined by

IF := {(l¢,In,lz,1) | pc contains [call P(a,z)];° and
proc [P(val z,res y)]" is c [end]’»} C Lab*

m Semantics and Verification of Software Summer semester 2007

Naive Formulation

Example (Fibonacci numbers)

proc [Fib(val x, y, res z)]! is
if [x<2]? then

[z := y_,_1]3 o “Valid” path:
ellse [9,1,2,3,8,10]
[call Fib(x-1, vy, z)]g'; o “Invalid” path:
[call Fib(x-2, z, 2)]%; [9,1,2,4,1,2,3,8,10]
[end]®;

[call Fib(5, 0, W]},

m Semantics and Verification of Software Summer semester 2007

Valid Paths I

@ Consider only paths with correct nesting of procedure calls and
returns

o Will yield MVP solution (Meet over all Valid Paths)

Definition (Valid paths I)

Given a dataflow system S = (Lab, E, F,(D,C),,) and l3,ly € Lab,
the set of valid paths from I; to l» is generated by the nonterminal
symbol P[l1, 5] according to the following productions:

P[ll, 12] — ll whenever ll = 12
P[ll, l3] — ll, P[lz, l3] whenever (ll, l2) e F
Pll., 1] — I, Plln, 2], P[l,1] whenever (I¢,1,,1:,1.) € [F

m Semantics and Verification of Software Summer semester 2007

The M VP Solution 1

Definition (Valid paths II)

Let S = (Lab,E,F,(D,C),t,¢) be a dataflow system. For every
[€ Lab, the set of valid paths up to [is given by

VPath(l) :={[l1,...,lk—1] | k > 1,11 € E,l; =,
[l1,...,l;] prefix of a valid path}.

For a path p = [l1,...,lk—1] € VPath(l), we define the transfer function
¢op: D — D by
$p =i _,0...0p, 0idp

(so that ¢ = idp).

m Semantics and Verification of Software Summer semester 2007

The M VP Solution I1

Definition (MVP solution)

Let S = (Lab,E,F,(D,C), ¢,) be a dataflow system where
Lab = {l1,...,l,}. The MVP solution for S is determined by
mvp(S) := (mvp(l1),...,mvp(l,)) € D"
where, for every [€ Lab,
mvp(l) := [{wp(2) | p € VPath(l)}.

Corollary
@ mvp(S) = mop(S)
Q The MVP solution is undecidable.

Proof.
Q since VPath(l) C Path(l) for every | € Lab
© by undecidability of MOP solution

Semantics and Verification of Software Summer semester 2007

© The Interprocedural Fixpoint Solution

Rm Semantics and Verification of Software Summer semester 2007

Making Context Explicit

o Goal: adapt fixpoint solution to avoid invalid paths

Rm Semantics and Verification of Software Summer semester 2007

Making Context Explicit

o Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

Rm Semantics and Verification of Software Summer semester 2007

Making Context Explicit

o Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

@ Non-—procedural constructs (skip, assignments, tests):
operate only on topmost element

Rm Semantics and Verification of Software Summer semester 2007

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

©

Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

@ call: computes new topmost entry from current and pushes it

Rm Semantics and Verification of Software Summer semester 2007

Making Context Explicit

o Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

@ Non-—procedural constructs (skip, assignments, tests):
operate only on topmost element

@ call: computes new topmost entry from current and pushes it

@ return: removes topmost entry and combines it with underlying
entry

Rm Semantics and Verification of Software Summer semester 2007

The Interprocedural Extension I

Definition 22.1 (Interprocedural extension (forward analysis))

Let S = (Lab,E,F,(D,C),t,¢) be a dataflow system. The
interprocedural extension of S is given by
S := (Lab,E, F,(D,C),1,9)

where
o D:=Dt
° all...dnﬁal’l...al;Z iff d; C d] for every 1 <i<mn
@ i:=1€D"

o for each I € Lab \ {lc,ln,ls,ly | () ln,s 1y 1) € IFY, ¢y : DT — DT
is given by ¢;(dw) := ¢i(d)w
o for each (I.,ln, s, 1) € IF, $;: D™ — D™ is given by

o ¢ (dw) = ¢y (d)dw

o O (w) i =w

9 @lx(w) =w

o & (d'dw) := d"w where d”’ := ¢, (d) U d’

m' Semantics and Verification of Software Summer semester 2007

The Interprocedural Extension 11

Remark: for
Q @i (dw) = ¢y (d)dw
Q ¢, (w) =w
Q ¢ (w) =w
Q ¢ (ddw) := d"w where d" := ¢ (d) U d’
the following generalizations are possible:
o modification of topmost entry in 2. and 3. (local variables, ...)

e modification of d’ or other (monotonic) combination operator in 4.

Rm Semantics and Verification of Software Summer semester 2007

The Interprocedural Extension III

Example 22.2 (Constant Propagation (cf. Lecture 19))
S = (Lab, E, F, (lA?, £),%,) is determined by

e D:={0|d: Var,—ZU{L, T}}

o LCzCT

@ L:=017€D

o for each Il € Lab \ {l¢,ln, Lz, i | (leyln, i, 1) € TFY,

(6) = 0 if B! = skip or B! € BExp
PROVZ 6z — ALa]d] if B' = (z := a)

whenever pc contains [call P(a,z)],® and

©

proc [P(val z,res y)]' is ¢ [end]’,
e call: set input parameter and reset output parameter
v1.(8) := [z — Aa]d,y — T]
e return: propagate output parameter to caller by resetting old value
1,(8) := 6]z — L]

m' Semantics and Verification of Software Summer semester 2007

© The Equation System

Rm S i ification of Software Summer semester 2007

The Equation System I

For an interprocedural dataflow system S := (Lab, E, F, (lA?, £),7,¢), he
intraprocedural equation system

Al — L ifle K
P\ pr (Al) | (I,1) € F} - otherwise

is extended to a system with three kinds of equations
(for every | € Lab):
o for actual dataflow information: Al; € D
(extension of intraprocedural Al)
o for single nodes: f;: DT — DT
(extension of intraprocedural transfer functions)
o for flow graphs of complete procedures: F; : D¥ — DT
(Fj(w) yields information at { if surrounding procedure is called
with information w)

Rm Semantics and Verification of Software Summer semester 2007

The Equation System II

Formal definition:

L ifl e E
Lo (AL) | (eyln, Loy 1) € IR} if 1 =1,

Al = for some (lo, b, Ly, Ir) € IF
LI/ (Al | (U,1) € F} otherwise
Aw) = o (F1, (&1, (w))) if I =1, for some (lg, Uy, Uy, 1) € [F
)= &1(w) otherwise
w ifle For
F(w) = l =1, for some (l¢, 1,1z, 1) € [F

LI{fr(Ey(w)) | (U',1) € F} otherwise

Rm Semantics and Verification of Software Summer semester 2007

The Equation System II

Formal definition:

L ifl e E
Lo (AL) | (eyln, Loy 1) € IR} if 1 =1,

Al = for some (lo, b, Ly, Ir) € IF
LI/ (Al | (U,1) € F} otherwise
Aw) = o (F1, (&1, (w))) if I =1, for some (lg, Uy, Uy, 1) € [F
)= &1(w) otherwise
w ifle For
F(w) = l =1, for some (l¢, 1,1z, 1) € [F

LI{fr(Ey(w)) | (U',1) € F} otherwise

As before: induces monotonic functional on lattice with ACC
= least fixpoint effectively computable

Rm Semantics and Verification of Software Summer semester 2007

The Equation System III

Example 22.3 (Constant Propagation)
on the board

Rm Semantics and Verification of Software Summer semester 2007

The Equation System III

Example 22.3 (Constant Propagation)

on the board

For the fixpoint iteration it is important that the auxiliary functions
only operate on the topmost element of the stack (without proof):

For everyl € Lab, d € D, and w € D*,

fildw) = fi(d)w and Fi(dw) = Fi(d)w

It therefore suffices to consider stacks with at most two entries, and so
the fixpoint iteration ranges over “finitary objects”.

m' Semantics and Verification of Software Summer semester 2007

	Repetition: Interprocedural Dataflow Analysis
	The Interprocedural Fixpoint Solution
	The Equation System

