

Semantics and Verification of Software

Lecture 22: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw/>

Summer semester 2007

- 1 Repetition: Interprocedural Dataflow Analysis
- 2 The Interprocedural Fixpoint Solution
- 3 The Equation System

Extending the Syntax

Syntactic categories:

Category	Domain	Meta variable
Procedure identifiers	$PVar = \{P, Q, \dots\}$	P
Procedure declarations	$PDec$	p
Commands (statements)	Cmd	c

Context-free grammar:

$$\begin{aligned} p ::= & \text{proc } [P(\text{val } x, \text{res } y)]^{l_n} \text{ is } c [\text{end}]^{l_x}; p \mid \varepsilon \in PDec \\ c ::= & [\text{skip}]^l \mid [x := a]^l \mid c_1; c_2 \mid \text{if } [b]^l \text{ then } c_1 \text{ else } c_2 \mid \\ & \text{while } [b]^l \text{ do } c \mid [\text{call } P(a, x)]_{l_r}^{l_c} \in Cmd \end{aligned}$$

- All labels and procedure names in program $p c$ distinct
- In $\text{proc } [P(\text{val } x, \text{res } y)]^{l_n} \text{ is } c [\text{end}]^{l_x}$, l_n (l_x) refers to the entry (exit) of P
- In $[\text{call } P(a, x)]_{l_r}^{l_c}$, l_c (l_r) refers to the call of (return from) P
- Static scoping of procedures
- First parameter call-by-value, second call-by-result

Procedure Flow Graphs

Definition (Procedure flow graphs)

The auxiliary functions `init`, `final`, and `flow` are extended as follows:

$$\begin{aligned}\text{init}([\text{call } P(a, x)]_{l_r}^{l_c}) &:= l_c \\ \text{final}([\text{call } P(a, x)]_{l_r}^{l_c}) &:= \{l_r\} \\ \text{flow}([\text{call } P(a, x)]_{l_r}^{l_c}) &:= \{(l_c; l_n), (l_x; l_r)\}\end{aligned}$$

$$\begin{aligned}\text{init}(\text{proc } [P(\text{val } x, \text{res } y)]_{l_n}^{l_x} \text{ is } c [\text{end}]^{l_x}) &:= l_n \\ \text{final}(\text{proc } [P(\text{val } x, \text{res } y)]_{l_n}^{l_x} \text{ is } c [\text{end}]^{l_x}) &:= \{l_x\} \\ \text{flow}(\text{proc } [P(\text{val } x, \text{res } y)]_{l_n}^{l_x} \text{ is } c [\text{end}]^{l_x}) &:= \{(l_n, \text{init}(c))\} \cup \\ &\quad \{(l, l_x) \mid l \in \text{final}(c)\}\end{aligned}$$

if `proc` $[P(\text{val } x, \text{res } y)]_{l_n}^{l_x}$ `is` c `[end]` l_x is in p .

Moreover the **interprocedural flow** of a program $p c$ is defined by

$$IF := \{(l_c, l_n, l_x, l_r) \mid p c \text{ contains } [\text{call } P(a, x)]_{l_r}^{l_c} \text{ and } \\ \text{proc } [P(\text{val } x, \text{res } y)]_{l_n}^{l_x} \text{ is } c [\text{end}]^{l_x}\} \subseteq Lab^4$$

Example (Fibonacci numbers)

```
proc [Fib(val x, y, res z)]1 is
  if [x<2]2 then
    [z := y+1]3
  else
    [call Fib(x-1, y, z)]4;
    [call Fib(x-2, z, z)]6;
  [end]8;
  [call Fib(5, 0, v)]910
```

- “Valid” path:
[9, 1, 2, 3, 8, 10]
- “Invalid” path:
[9, 1, 2, 4, 1, 2, 3, 8, 10]

- Consider only paths with **correct nesting** of procedure calls and returns
- Will yield **MVP** solution (**Meet over all Valid Paths**)

Definition (Valid paths I)

Given a dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ and $l_1, l_2 \in Lab$, the set of **valid paths** from l_1 to l_2 is generated by the nonterminal symbol $P[l_1, l_2]$ according to the following productions:

$$\begin{array}{ll} P[l_1, l_2] \rightarrow l_1 & \text{whenever } l_1 = l_2 \\ P[l_1, l_3] \rightarrow l_1, P[l_2, l_3] & \text{whenever } (l_1, l_2) \in F \\ P[l_c, l] \rightarrow l_c, P[l_n, l_x], P[l_r, l] & \text{whenever } (l_c, l_n, l_x, l_r) \in IF \end{array}$$

Definition (Valid paths II)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $l \in Lab$, the set of **valid paths up to l** is given by

$$VPath(l) := \{[l_1, \dots, l_{k-1}] \mid k \geq 1, l_1 \in E, l_k = l, [l_1, \dots, l_k] \text{ prefix of a valid path}\}.$$

For a path $p = [l_1, \dots, l_{k-1}] \in VPath(l)$, we define the **transfer function** $\varphi_p : D \rightarrow D$ by

$$\varphi_p := \varphi_{l_{k-1}} \circ \dots \circ \varphi_{l_1} \circ \mathbf{id}_D$$

(so that $\varphi_{[]} = \mathbf{id}_D$).

Definition (MVP solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $Lab = \{l_1, \dots, l_n\}$. The **MVP solution** for S is determined by

$$\mathbf{mvp}(S) := (\mathbf{mvp}(l_1), \dots, \mathbf{mvp}(l_n)) \in D^n$$

where, for every $l \in Lab$,

$$\mathbf{mvp}(l) := \bigsqcup \{\varphi_p(\iota) \mid p \in VPath(l)\}.$$

Corollary

- ① $\mathbf{mvp}(S) \sqsubseteq \mathbf{mop}(S)$
- ② *The MVP solution is undecidable.*

Proof.

- ① since $VPath(l) \subseteq Path(l)$ for every $l \in Lab$
- ② by undecidability of MOP solution

- 1 Repetition: Interprocedural Dataflow Analysis
- 2 The Interprocedural Fixpoint Solution
- 3 The Equation System

- **Goal:** adapt fixpoint solution to **avoid invalid paths**
- **Approach:** encode call history into data flow properties (use **stacks D^+** as dataflow version of runtime stack)
- Non-procedural constructs (**skip**, assignments, tests): operate only on topmost element
- **call:** computes new topmost entry from current and pushes it
- **return:** removes topmost entry and combines it with underlying entry

- **Goal:** adapt fixpoint solution to **avoid invalid paths**
- **Approach:** encode call history into data flow properties
(use **stacks** D^+ as dataflow version of runtime stack)
- Non-procedural constructs (skip, assignments, tests):
operate only on topmost element
- call: computes new topmost entry from current and pushes it
- return: removes topmost entry and combines it with underlying entry

- **Goal:** adapt fixpoint solution to **avoid invalid paths**
- **Approach:** encode call history into data flow properties (use **stacks** D^+ as dataflow version of runtime stack)
- Non-procedural constructs (**skip**, assignments, tests):
operate only on topmost element
- **call:** computes new topmost entry from current and pushes it
- **return:** removes topmost entry and combines it with underlying entry

- **Goal:** adapt fixpoint solution to **avoid invalid paths**
- **Approach:** encode call history into data flow properties (use **stacks** D^+ as dataflow version of runtime stack)
- Non-procedural constructs (**skip**, assignments, tests): operate only on topmost element
- **call:** computes new topmost entry from current and pushes it
 - **return:** removes topmost entry and combines it with underlying entry

- **Goal:** adapt fixpoint solution to **avoid invalid paths**
- **Approach:** encode call history into data flow properties (use **stacks** D^+ as dataflow version of runtime stack)
- Non-procedural constructs (**skip**, assignments, tests): operate only on topmost element
- **call:** computes new topmost entry from current and pushes it
- **return:** removes topmost entry and combines it with underlying entry

The Interprocedural Extension I

Definition 22.1 (Interprocedural extension (forward analysis))

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. The **interprocedural extension** of S is given by

$$\hat{S} := (Lab, E, F, (\hat{D}, \hat{\sqsubseteq}), \hat{\iota}, \hat{\varphi})$$

where

- $\hat{D} := D^+$
- $d_1 \dots d_n \hat{\sqsubseteq} d'_1 \dots d'_n$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$
- $\hat{\iota} := \iota \in D^+$
- for each $l \in Lab \setminus \{l_c, l_n, l_x, l_r \mid (l_c, l_n, l_x, l_r) \in IF\}$, $\hat{\varphi}_l : D^+ \rightarrow D^+$ is given by $\hat{\varphi}_l(dw) := \varphi_l(d)w$
- for each $(l_c, l_n, l_x, l_r) \in IF$, $\hat{\varphi}_l : D^+ \rightarrow D^+$ is given by
 - $\hat{\varphi}_{l_c}(dw) := \varphi_{l_c}(d)dw$
 - $\hat{\varphi}_{l_n}(w) := w$
 - $\hat{\varphi}_{l_x}(w) := w$
 - $\hat{\varphi}_{l_r}(d'dw) := d''w$ where $d'' := \varphi_{l_r}(d) \sqcup d'$

Remark: for

- ① $\hat{\varphi}_{l_c}(dw) := \varphi_{l_c}(d)dw$
- ② $\hat{\varphi}_{l_n}(w) := w$
- ③ $\hat{\varphi}_{l_x}(w) := w$
- ④ $\hat{\varphi}_{l_r}(d'dw) := d''w$ where $d'' := \varphi_{l_r}(d) \sqcup d'$

the following generalizations are possible:

- modification of topmost entry in 2. and 3. (local variables, ...)
- modification of d' or other (monotonic) combination operator in 4.

Example 22.2 (Constant Propagation (cf. Lecture 19))

$\hat{S} := (Lab, E, F, (\hat{D}, \hat{\sqsubseteq}), \hat{\iota}, \hat{\phi})$ is determined by

- $D := \{\delta \mid \delta : Var_c \rightarrow \mathbb{Z} \cup \{\perp, \top\}\}$
- $\perp \sqsubseteq z \sqsubseteq \top$
- $\iota := \delta_{\top} \in D$
- for each $l \in Lab \setminus \{l_c, l_n, l_x, l_r \mid (l_c, l_n, l_x, l_r) \in IF\}$,
$$\varphi_l(\delta) := \begin{cases} \delta & \text{if } B^l = \text{skip or } B^l \in BExp \\ \delta[x \mapsto \mathfrak{A}[a]\delta] & \text{if } B^l = (x := a) \end{cases}$$
- whenever pc contains $[\text{call } P(a, z)]_{l_r}^{l_c}$ and
 $\text{proc } [P(\text{val } x, \text{res } y)]^{l_n} \text{ is } c \text{ [end]}^{l_x}$,
 - **call:** set input parameter and reset output parameter
 $\varphi_{l_c}(\delta) := \delta[x \mapsto \mathfrak{A}[a]\delta, y \mapsto \top]$
 - **return:** propagate output parameter to caller by resetting old value
 $\varphi_{l_r}(\delta) := \delta[z \mapsto \perp]$

- 1 Repetition: Interprocedural Dataflow Analysis
- 2 The Interprocedural Fixpoint Solution
- 3 The Equation System

The Equation System I

For an interprocedural dataflow system $\hat{S} := (Lab, E, F, (\hat{D}, \hat{\sqsubseteq}), \hat{\iota}, \hat{\varphi})$, the intraprocedural equation system

$$\text{AI}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\text{AI}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

is extended to a system with three kinds of equations
(for every $l \in Lab$):

- for actual **dataflow information**: $\text{AI}_l \in D$
(extension of intraprocedural AI)
- for **single nodes**: $f_l : D^+ \rightarrow D^+$
(extension of intraprocedural transfer functions)
- for flow graphs of **complete procedures**: $F_l : D^+ \rightarrow D^+$
($F_l(w)$ yields information at l if surrounding procedure is called with information w)

The Equation System II

Formal definition:

$$\text{Al}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l_c}(\text{Al}_{l_c}) \mid (l_c, l_n, l_x, l_r) \in IF\} & \text{if } l = l_n \\ \bigsqcup \{f_{l'}(\text{Al}_{l'}) \mid (l', l) \in F\} & \text{for some } (l_c, l_n, l_x, l_r) \in IF \\ & \text{otherwise} \end{cases}$$

$$f_l(w) = \begin{cases} \hat{\varphi}_{l_r}(F_{l_x}(\hat{\varphi}_{l_c}(w))) & \text{if } l = l_c \text{ for some } (l_c, l_n, l_x, l_r) \in IF \\ \hat{\varphi}_l(w) & \text{otherwise} \end{cases}$$

$$F_l(w) = \begin{cases} w & \text{if } l \in E \text{ or} \\ & l = l_n \text{ for some } (l_c, l_n, l_x, l_r) \in IF \\ \bigsqcup \{f_{l'}(F_{l'}(w)) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

As before: induces monotonic functional on lattice with ACC
⇒ least fixpoint effectively computable

The Equation System II

Formal definition:

$$\text{Al}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l_c}(\text{Al}_{l_c}) \mid (l_c, l_n, l_x, l_r) \in IF\} & \text{if } l = l_n \\ \bigsqcup \{f_{l'}(\text{Al}_{l'}) \mid (l', l) \in F\} & \text{for some } (l_c, l_n, l_x, l_r) \in IF \\ & \text{otherwise} \end{cases}$$

$$f_l(w) = \begin{cases} \hat{\varphi}_{l_r}(F_{l_x}(\hat{\varphi}_{l_c}(w))) & \text{if } l = l_c \text{ for some } (l_c, l_n, l_x, l_r) \in IF \\ \hat{\varphi}_l(w) & \text{otherwise} \end{cases}$$

$$F_l(w) = \begin{cases} w & \text{if } l \in E \text{ or} \\ & l = l_n \text{ for some } (l_c, l_n, l_x, l_r) \in IF \\ \bigsqcup \{f_{l'}(F_{l'}(w)) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

As before: induces monotonic functional on lattice with ACC
⇒ least fixpoint effectively computable

Example 22.3 (Constant Propagation)

on the board

For the fixpoint iteration it is important that the auxiliary functions only operate on the topmost element of the stack (without proof):

Lemma 22.4

For every $l \in \text{Lab}$, $d \in D$, and $w \in D^*$,

$$f_l(dw) = f_l(d)w \text{ and } F_l(dw) = F_l(d)w$$

It therefore suffices to consider stacks with at most two entries, and so the fixpoint iteration ranges over “finitary objects”.

Example 22.3 (Constant Propagation)

on the board

For the fixpoint iteration it is important that the auxiliary functions only operate on the topmost element of the stack (without proof):

Lemma 22.4

For every $l \in \text{Lab}$, $d \in D$, and $w \in D^$,*

$$f_l(dw) = f_l(d)w \text{ and } F_l(dw) = F_l(d)w$$

It therefore suffices to consider stacks with at most two entries, and so the fixpoint iteration ranges over “finitary objects”.