
Semantics and Verification of Software

Lecture 22: Dataflow Analysis

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Outline

1 Repetition: Interprocedural Dataflow Analysis

2 The Interprocedural Fixpoint Solution

3 The Equation System

Semantics and Verification of Software Summer semester 2007 2

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P

Procedure declarations PDec p

Commands (statements) Cmd c

Context–free grammar:

p ::= proc [P (val x, res y)]ln is c [end]lx;p | ε ∈ PDec

c ::= [skip]l | [x := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [call P (a, x)]lc
lr
∈ Cmd

All labels and procedure names in program p c distinct

In proc [P (val x, res y)]ln is c [end]lx , ln (lx) refers to the entry
(exit) of P

In [call P (a, x)]lclr , lc (lr) refers to the call of (return from) P

Static scoping of procedures

First parameter call–by–value, second call–by–result

Semantics and Verification of Software Summer semester 2007 3

Procedure Flow Graphs

Definition (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:

init([call P (a, x)]lclr) := lc

final([call P (a, x)]lclr) := {lr}

flow([call P (a, x)]lc
lr

) := {(lc; ln), (lx; lr)}

init(proc [P (val x, res y)]ln is c [end]lx) := ln
final(proc [P (val x, res y)]ln is c [end]lx) := {lx}
flow(proc [P (val x, res y)]ln is c [end]lx) := {(ln, init(c))} ∪

{(l, lx) | l ∈ final(c)}

if proc [P (val x, res y)]ln is c [end]lx is in p.
Moreover the interprocural flow of a program p c is defined by

IF := {(lc, ln, lx, lr) | p c contains [call P (a, x)]lc
lr

and

proc [P (val x, res y)]ln is c [end]lx} ⊆ Lab4

Semantics and Verification of Software Summer semester 2007 4

Naive Formulation

Example (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

“Valid” path:
[9, 1, 2, 3, 8, 10]

“Invalid” path:
[9, 1, 2, 4, 1, 2, 3, 8, 10]

Semantics and Verification of Software Summer semester 2007 5

Valid Paths I

Consider only paths with correct nesting of procedure calls and
returns

Will yield MVP solution (Meet over all Valid Paths)

Definition (Valid paths I)

Given a dataflow system S = (Lab, E, F, (D,⊑), ι, ϕ) and l1, l2 ∈ Lab,
the set of valid paths from l1 to l2 is generated by the nonterminal
symbol P [l1, l2] according to the following productions:

P [l1, l2] → l1 whenever l1 = l2
P [l1, l3] → l1, P [l2, l3] whenever (l1, l2) ∈ F

P [lc, l] → lc, P [ln, lx], P [lr, l] whenever (lc, ln, lx, lr) ∈ IF

Semantics and Verification of Software Summer semester 2007 6

The MVP Solution I

Definition (Valid paths II)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every
l ∈ Lab, the set of valid paths up to l is given by

VPath(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E, lk = l,

[l1, . . . , lk] prefix of a valid path}.

For a path p = [l1, . . . , lk−1] ∈ VPath(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer semester 2007 7

The MVP Solution II

Definition (MVP solution)

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MVP solution for S is determined by

mvp(S) := (mvp(l1), . . . ,mvp(ln)) ∈ Dn

where, for every l ∈ Lab,
mvp(l) :=

⊔

{ϕp(ι) | p ∈ VPath(l)}.

Corollary

1 mvp(S) ⊑ mop(S)

2 The MVP solution is undecidable.

Proof.
1 since VPath(l) ⊆ Path(l) for every l ∈ Lab

2 by undecidability of MOP solution

Semantics and Verification of Software Summer semester 2007 8

Outline

1 Repetition: Interprocedural Dataflow Analysis

2 The Interprocedural Fixpoint Solution

3 The Equation System

Semantics and Verification of Software Summer semester 2007 9

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks D+ as dataflow version of runtime stack)

Non–procedural constructs (skip, assignments, tests):
operate only on topmost element

call: computes new topmost entry from current and pushes it

return: removes topmost entry and combines it with underlying
entry

Semantics and Verification of Software Summer semester 2007 10

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks D+ as dataflow version of runtime stack)

Non–procedural constructs (skip, assignments, tests):
operate only on topmost element

call: computes new topmost entry from current and pushes it

return: removes topmost entry and combines it with underlying
entry

Semantics and Verification of Software Summer semester 2007 10

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks D+ as dataflow version of runtime stack)

Non–procedural constructs (skip, assignments, tests):
operate only on topmost element

call: computes new topmost entry from current and pushes it

return: removes topmost entry and combines it with underlying
entry

Semantics and Verification of Software Summer semester 2007 10

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks D+ as dataflow version of runtime stack)

Non–procedural constructs (skip, assignments, tests):
operate only on topmost element

call: computes new topmost entry from current and pushes it

return: removes topmost entry and combines it with underlying
entry

Semantics and Verification of Software Summer semester 2007 10

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks D+ as dataflow version of runtime stack)

Non–procedural constructs (skip, assignments, tests):
operate only on topmost element

call: computes new topmost entry from current and pushes it

return: removes topmost entry and combines it with underlying
entry

Semantics and Verification of Software Summer semester 2007 10

The Interprocedural Extension I

Definition 22.1 (Interprocedural extension (forward analysis))

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. The
interprocedural extension of S is given by

Ŝ := (Lab, E, F, (D̂, ⊑̂), ι̂, ϕ̂)
where

D̂ := D+

d1 . . . dn ⊑̂ d′1 . . . d′n iff di ⊑ d′i for every 1 ≤ i ≤ n

ι̂ := ι ∈ D+

for each l ∈ Lab \ {lc, ln, lx, lr | (lc, ln, lx, lr) ∈ IF}, ϕ̂l : D+ → D+

is given by ϕ̂l(dw) := ϕl(d)w

for each (lc, ln, lx, lr) ∈ IF , ϕ̂l : D+ → D+ is given by

ϕ̂lc(dw) := ϕlc(d)dw

ϕ̂ln(w) := w

ϕ̂lx(w) := w

ϕ̂lr(d
′dw) := d′′w where d′′ := ϕlr (d) ⊔ d′

Semantics and Verification of Software Summer semester 2007 11

The Interprocedural Extension II

Remark: for

1 ϕ̂lc(dw) := ϕlc(d)dw

2 ϕ̂ln(w) := w

3 ϕ̂lx(w) := w

4 ϕ̂lr(d
′dw) := d′′w where d′′ := ϕlr (d) ⊔ d′

the following generalizations are possible:

modification of topmost entry in 2. and 3. (local variables, ...)

modification of d′ or other (monotonic) combination operator in 4.

Semantics and Verification of Software Summer semester 2007 12

The Interprocedural Extension III

Example 22.2 (Constant Propagation (cf. Lecture 19))

Ŝ := (Lab, E, F, (D̂, ⊑̂), ι̂, ϕ̂) is determined by

D := {δ | δ : Var c → Z ∪ {⊥,⊤}}

⊥ ⊑ z ⊑ ⊤

ι := δ⊤ ∈ D

for each l ∈ Lab \ {lc, ln, lx, lr | (lc, ln, lx, lr) ∈ IF},

ϕl(δ) :=

{

δ if Bl = skip or Bl ∈ BExp

δ[x 7→ AJaKδ] if Bl = (x := a)

whenever p c contains [call P (a, z)]lclr and

proc [P (val x, res y)]ln is c [end]lx ,

call: set input parameter and reset output parameter
ϕlc(δ) := δ[x 7→ AJaKδ, y 7→ ⊤]
return: propagate output parameter to caller by resetting old value
ϕlr(δ) := δ[z 7→ ⊥]

Semantics and Verification of Software Summer semester 2007 13

Outline

1 Repetition: Interprocedural Dataflow Analysis

2 The Interprocedural Fixpoint Solution

3 The Equation System

Semantics and Verification of Software Summer semester 2007 14

The Equation System I

For an interprocedural dataflow system Ŝ := (Lab, E, F, (D̂, ⊑̂), ι̂, ϕ̂), he
intraprocedural equation system

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

is extended to a system with three kinds of equations
(for every l ∈ Lab):

for actual dataflow information: AIl ∈ D

(extension of intraprocedural AI)

for single nodes: fl : D+ → D+

(extension of intraprocedural transfer functions)

for flow graphs of complete procedures: Fl : D+ → D+

(Fl(w) yields information at l if surrounding procedure is called
with information w)

Semantics and Verification of Software Summer semester 2007 15

The Equation System II

Formal definition:

AIl =















ι if l ∈ E
⊔

{ϕlc(AIlc) | (lc, ln, lx, lr) ∈ IF} if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{f l′(AIl′) | (l′, l) ∈ F} otherwise

fl(w) =

{

ϕ̂lr(Flx(ϕ̂lc(w))) if l = lc for some (lc, ln, lx, lr) ∈ IF

ϕ̂l(w) otherwise

Fl(w) =







w if l ∈ E or
l = ln for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(Fl′(w)) | (l′, l) ∈ F} otherwise

As before: induces monotonic functional on lattice with ACC
=⇒ least fixpoint effectively computable

Semantics and Verification of Software Summer semester 2007 16

The Equation System II

Formal definition:

AIl =















ι if l ∈ E
⊔

{ϕlc(AIlc) | (lc, ln, lx, lr) ∈ IF} if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{f l′(AIl′) | (l′, l) ∈ F} otherwise

fl(w) =

{

ϕ̂lr(Flx(ϕ̂lc(w))) if l = lc for some (lc, ln, lx, lr) ∈ IF

ϕ̂l(w) otherwise

Fl(w) =







w if l ∈ E or
l = ln for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(Fl′(w)) | (l′, l) ∈ F} otherwise

As before: induces monotonic functional on lattice with ACC
=⇒ least fixpoint effectively computable

Semantics and Verification of Software Summer semester 2007 16

The Equation System III

Example 22.3 (Constant Propagation)

on the board

For the fixpoint iteration it is important that the auxiliary functions
only operate on the topmost element of the stack (without proof):

Lemma 22.4

For every l ∈ Lab, d ∈ D, and w ∈ D∗,

fl(dw) = fl(d)w and Fl(dw) = Fl(d)w

It therefore suffices to consider stacks with at most two entries, and so
the fixpoint iteration ranges over “finitary objects”.

Semantics and Verification of Software Summer semester 2007 17

The Equation System III

Example 22.3 (Constant Propagation)

on the board

For the fixpoint iteration it is important that the auxiliary functions
only operate on the topmost element of the stack (without proof):

Lemma 22.4

For every l ∈ Lab, d ∈ D, and w ∈ D∗,

fl(dw) = fl(d)w and Fl(dw) = Fl(d)w

It therefore suffices to consider stacks with at most two entries, and so
the fixpoint iteration ranges over “finitary objects”.

Semantics and Verification of Software Summer semester 2007 17

	Repetition: Interprocedural Dataflow Analysis
	The Interprocedural Fixpoint Solution
	The Equation System

