Semantics and Verification of Software

Lecture 23: Wrap—Up

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: The Interprocedural Fixpoint Solution

Rm Semantics and V tion of Software Summer semester 2007

Making Context Explicit

o Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

@ Non-—procedural constructs (skip, assignments, tests):
operate only on topmost element

@ call: computes new topmost entry from current and pushes it

@ return: removes topmost entry and combines it with underlying
entry

Rm Semantics and Verification of Software Summer semester 2007

The Interprocedural Extension I

Definition (Interprocedural extension (forward analysis))

Let S = (Lab,E, F,(D,C),t,¢) be a dataflow system. The
interprocedural extension of S is given by

S .= (Lab,E, F,(D,£),7,9)

where
o D:=D*
ody...d, Cdy...d iff d; T d forevery 1<i<n
@ l:=1e Dt
o for each [€ Lab \ {l¢,ln,lz, 1y | (leyln, s, 1) € TFY,
@y : DT — DT is given by ¢;(dw) := p(d)w
o for each (I.,ln, s, 1) € IF, $;: DT — D™ is given by

o @i (dw) := @i (d)dw

o O (w) i =w

o O (w) =w

o @1, (d'dw) := d’w where d’ := ¢} (d) U ¢} (d')

m' Semantics and Verification of Software Summer semester 2007

The Interprocedural Extension 11

Example (Constant Propagation (cf. Lecture 19))

S .= (Lab, E, F, (ZA?, £),%,) is determined by
e D:={0|d: Var,—ZU{L, T}}
o LCzCT
@ L:=017€D
o for each [€ Lab \ {l¢,ln,lz, by | (leyln, s, 1) € TFY,
(6) :=) if B! = skip or B! € BExp
PROVZ 6z — Aa]d] if B' = (z := a)
o whenever pc contains [call P(a,2)];° and
proc [P(val z,res y)]' is ¢ [end]’,
o call: set input parameter and reset output parameter
@1.(0) := [z — Ala]d,y — T]
e return: propagate output parameter to caller by resetting old z

value and copying y to z
. (0):=8lz— 1] @ () =0z~ Ly~ L,z ()

m' Semantics and Verification of Software Summer semester 2007

The Equation System

For an interprocedural dataflow system S := (Lab, E, F, (lA?, £),%,9),
the intraprocedural equation system

Al — L ifle K
P\ pr (Al) | (I,1) € F} otherwise

is extended to a system with three kinds of equations
(for every | € Lab):
o for actual dataflow information: Al; € D
(extension of intraprocedural Al)
o for single nodes: f;: DT — DT
(extension of intraprocedural transfer functions)
o for flow graphs of complete procedures: F; : D¥ — DT
(Fj(w) yields information at { if surrounding procedure is called
with information w)

Rm Semantics and Verification of Software Summer semester 2007

© Further Topics in Dataflow Analysis

Rm Semantics and Verification of Software Summer semester 2007

Context—Sensitive Dataflow Analysis

o Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns

Rm Semantics and Verification of Software Summer semester 2007

Context—Sensitive Dataflow Analysis

o Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns
@ But: do not distinguish between different procedure calls

L ifle B
Al — I_I{(Pl(,(AllC) ‘ (lw l’IL7 lu lr) S IF} lfl == l'n
1= for some (l¢,ln, 1z, 1) € IF
LI{fr(Aly) | (I',1) € F} otherwise

o information about calling states combined for all call sites
@ procedure body only analyzed once using combined information
o resulting information used at all return points

— “context—insensitive”

Rm Semantics and Verification of Software Summer semester 2007

Context—Sensitive Dataflow Analysis

o Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns
@ But: do not distinguish between different procedure calls

L ifle FE
Lo (AL) | (leyln,y Up, 1) € IF} ifl =1,

for some (l¢,ln, 1z, 1) € IF
LI{fr(Aly) | (I',1) € F} otherwise

Al; =

o information about calling states combined for all call sites
@ procedure body only analyzed once using combined information
o resulting information used at all return points
= ‘“context—insensitive”
@ Alternative: context—sensitive analysis
@ separate information for different call sites
¢ implementation by “procedure cloning”
@ more precise
@ more costly

Rm Semantics and Verification of Software Summer semester 2007

Shape Analysis I

@ So far: only static data structures (variables)

Rm Semantics and V tion of Software Summer semester 2007

Shape Analysis I

@ So far: only static data structures (variables)
@ Now: pointer (variables) and dynamic memory allocation using
heaps

Rm Semantics and V tion of Software Summer semester 2007

Shape Analysis I

@ So far: only static data structures (variables)

@ Now: pointer (variables) and dynamic memory allocation using
heaps

o Goal: shape analysis = approximative analysis of heap data
structures

Rm Semantics and V tion of Software Summer semester 2007

Shape Analysis I

@ So far: only static data structures (variables)
@ Now: pointer (variables) and dynamic memory allocation using
heaps
o Goal: shape analysis = approximative analysis of heap data
structures
o Interesting information:
¢ data types (to avoid type errors, such as dereferencing nil)
o sharing (different pointer variables referencing same address;
aliasing)
o reachability of nodes (garbage collection)
¢ disjointness of heap regions (parallelizability)
o shapes (lists, trees, absence of cycles, ...)

Rm Semantics and Verification of Software Summer semester 2007

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
o Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:
¢ data types (to avoid type errors, such as dereferencing nil)
o sharing (different pointer variables referencing same address;
aliasing)
o reachability of nodes (garbage collection)
¢ disjointness of heap regions (parallelizability)
o shapes (lists, trees, absence of cycles, ...)
Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs
o abstract nodes A = sets of variables (interpretation: = € A iff x
points to concrete node represented by A)
o () represents all concrete nodes that are not directly reachable
o transfer functions transform (sets of) shape graphs

¢ ©

©

Rm Semantics and Verification of Software Summer semester 2007

Shape Analysis I

¢ ©

©

]

see [Nielson/Nielson/Hankin 2005. Sct. 2.6
RWNTH

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:
¢ data types (to avoid type errors, such as dereferencing nil)
o sharing (different pointer variables referencing same address;
aliasing)
o reachability of nodes (garbage collection)
¢ disjointness of heap regions (parallelizability)
o shapes (lists, trees, absence of cycles, ...)
Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs
o abstract nodes A = sets of variables (interpretation: = € A iff x
points to concrete node represented by A)
o () represents all concrete nodes that are not directly reachable
o transfer functions transform (sets of) shape graphs

Semantics and Verification of Software Summer semester 2007

Shape Analysis I1

Yz — y.sel (\>ell
m sel1 sell

I sel’ ! ﬁ. - sel 8652 . - sel 5612

(3%
sel

selo

TSQN TSQN
w2 [@] [[

m' Semantics and Verification of Software Summer semester 2007

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent

Rm Semantics and V tion of Software Summer semester 2007

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent
@ Of course both are (and should be) related!

Rm Semantics and Verification of Software Summer semester 2007

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent
@ Of course both are (and should be) related!

@ To this aim: introduce small-step operational semantics operating
on program labels

<lo,0‘0> — ... (ln,O'n> — Op+1

where [; € Lab and o; : Var — 7

Rm Semantics and Verification of Software Summer semester 2007

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent
@ Of course both are (and should be) related!

@ To this aim: introduce small-step operational semantics operating
on program labels

<lo,0‘0> — ... (ln,O'n> — Op+1

where [; € Lab and o; : Var — 7
o Example: correctness of Constant Propagation
Let cg € Omd with Iy = init(co), and let | € Lab.,, x € Var, and

z € Z such that CPy(x) = z. Then for every og,0 € ¥ such that
(lo,00) —=* (l,0), o(x) = =.

Rm Semantics and Verification of Software Summer semester 2007

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent
@ Of course both are (and should be) related!

@ To this aim: introduce small-step operational semantics operating
on program labels

<lo,0‘0> — ... (ln,O'n> — Op+1

where [; € Lab and o; : Var — 7

o Example: correctness of Constant Propagation
Let cg € Omd with Iy = init(co), and let | € Lab.,, x € Var, and
z € Z such that CPy(x) = z. Then for every og,0 € ¥ such that
(lo,00) =" (l,0), o(x) = 2.

@ see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Rm Semantics and Verification of Software Summer semester 2007

© Further Topics in Formal Semantics

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Functional Languages I

@ Program = list of function definitions

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Functional Languages I

@ Program = list of function definitions

o Simplest setting: first-order function definitions of the form
flze,...,zp) =t

e function name f
o formal parameters 1, ..., T,
e term t over (base and defined) function calls and z1, ..., z,

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Functional Languages I

@ Program = list of function definitions

o Simplest setting: first-order function definitions of the form
flze,...,zp) =t

e function name f
o formal parameters 1, ..., T,
e term t over (base and defined) function calls and z1, ..., z,

@ Operational semantics (only function calls)
e call-by—value case:

t1 =21 ..ty — 2 X1 21,0, T o 2] & 2
fltay. o itn) — 2

o call-by-name case:

tlxy — t1, ..,y >] — 2

fltay. o itn) — 2

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Functional Languages 11

@ Denotational semantics

©

program induces call-by—value and call-by—name functional
monotonic and continuous w.r.t. graph inclusion

semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

¢ © ¢

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Functional Languages 11

@ Denotational semantics
o program induces call-by—value and call-by—name functional
e monotonic and continuous w.r.t. graph inclusion
o semantics := least fixpoint (Tarski/Knaster Theorem)
e coincides with operational semantics

o Extensions: higher—order types, data types, ...

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Functional Languages 11

@ Denotational semantics

o program induces call-by—value and call-by—name functional
@ monotonic and continuous w.r.t. graph inclusion

o semantics := least fixpoint (Tarski/Knaster Theorem)

e coincides with operational semantics

o Extensions: higher—order types, data types, ...

@ see Functional Programming course [Giesl] and [Winskel 1996,
Sct. 9]

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Concurrent Languages

@ Problem: “classical” view of sequential systems
Program : Input — Output

not adequate for concurrent settings

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Concurrent Languages

@ Problem: “classical” view of sequential systems
Program : Input — Output

not adequate for concurrent settings
@ Missing: aspect of interaction

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Concurrent Languages

@ Problem: “classical” view of sequential systems
Program : Input — Output

not adequate for concurrent settings
@ Missing: aspect of interaction
o Typical approach:
o concurrency modelled by interleaving
o interaction modelled by (explicit) communication

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Concurrent Languages

@ Problem: “classical” view of sequential systems
Program : Input — Output

not adequate for concurrent settings
@ Missing: aspect of interaction
o Typical approach:
o concurrency modelled by interleaving
o interaction modelled by (explicit) communication
e Example: Milner’s Calculus of Communicating Systems (CCS)

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Concurrent Languages

@ Problem: “classical” view of sequential systems
Program : Input — Output

not adequate for concurrent settings
Missing: aspect of interaction
Typical approach:
o concurrency modelled by interleaving
o interaction modelled by (explicit) communication
Example: Milner’s Calculus of Communicating Systems (CCS)
Syntax: P:=0|a.P|PA+P | P | P2 ..

e ¢

¢ ©

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Concurrent Languages

@ Problem: “classical” view of sequential systems
Program : Input — Output

not adequate for concurrent settings
Missing: aspect of interaction
Typical approach:
o concurrency modelled by interleaving
o interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)
Syntax: P:=0|a.P|PA+P | P | P2 ..
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

P p P p PAP Q%
aPSP P+Q35P PIQEP|Q PIQLP|Q

e ¢

¢ © ©

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Concurrent Languages

@ Problem: “classical” view of sequential systems
Program : Input — Output

not adequate for concurrent settings
@ Missing: aspect of interaction
o Typical approach:
o concurrency modelled by interleaving
o interaction modelled by (explicit) communication

e Example: Milner’s Calculus of Communicating Systems (CCS)
o Syntax: Pu=0|a.P | A+ |P|P]..
@ (Operational) Semantics: labelled transition systems defined by
transition rules of the form
P&p P&p PP Q%
aP%5P P+Q3P PIQEP|Q PIQLP|Q

@ see course on Modelling Concurrent and Probabilistic Systems in
WS 2007/08 [Katoen, Noll] and [Winskel 1996, Sct. 14]

m' Semantics and Verification of Software Summer semester 2007

@ Evaluation of the Course

Rm Semantics and Verification of Software Summer semester 2007

Overall Evaluation of Lecture 1
]

Overall evaluation (SS 2007)
23% 46% 23% 0% 8%
strongly disagree =13
mw=22

strongly agree

1. llearned a lot in this course.

Seite 5

EvaSys Auswertung

09.07.2007

(see http://www-i2.informatik.rwth-aachen.de/i2/svsw/ for full

reports)

Summer semester 2007

Semantics and Verification of Software

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Overall Evaluation of Lecture 11

Priv.-Doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (1028771)

2. 1 would grade the instructor with: n=13
mw=1.4

el —

satisfactory (3) 0%

sufficient (4)

2
*

insufficient (5) 0%

3. I would grade the course with: n=13

verygood () [] 30.8% s=09
god@ [] 46.2%
satisfactory (3) [15.4%
sufficient (4) [] 7%
|

insufficient (5) 0%

4. 1 would grade my own effort with: n=13
mw=2.6

very good (1) | 0% s=07
wod2 [46.2%
satisfactory (3) [] 46.2%
sufficient (4) [] 7%
insufficient (5) | 0%

Rm er semester 2007

Evaluation Profile of Lecture

Priv.-Doz. D rer.nal. Thomas Nol, Semaniik und Verikation von Softwars (1028771)

Profillinie

Teilbereich: Informatik
Name der/des Lehrenden: Priv.-Doz. Dr.rer.nat. Thomas Nol

| Titel der Lehrveranstaltung: - Semantk und Verifikation von Software (1028771)

& (Name der Umfrage)

1. The sims of his ourse were dealy dentfod. stongly agree sroroly et
~— deeoree
2 rest of progr strongly agree. = strongly
So110 amment please h bage) P deegree
3 The course was 00 casy woditon =iz
-
1. presents the conta nan understandsble ey svongly agres sroraly mets
Gnagiee
2 mekes sur th presentad coert s understood suongly agree sirongly metn
s
/
3 bustrates e cortent hrough erarpes. swongly agree sroraly mets
deegree
\
4. prasonts learty anmanged summar s stongly agree sroraly s
deegree
/
5 answers auestons from students careuly sy s | sroroly
deegree
6 s open-m nded wnen talking to students, strongly agree l strongly a2
Gnagree
7 discriminates sgainst certain students suongly agree srongly s
s
& spocks loudly and clearly. sy s |3 sroraly met2
s
9 I o approachable out of ecturs times stongly agree sronaly et
deegree
\
10 aconps suggesiions rom stdents. stongly agree sroraly
deegree
1. The media that were used in the course (blackboard, slides, strongly agree: A strongly
rofecion) Niped underianding ih content v X deegree
2 The ofered materl 0 prepare and review (scris, assion meris. stonglyagres sroray o
Tierature, e,) hetped riersanding fhe conert v / Gnagee
1. The course nomaly begins on time. suongly agree srongly meta
s
\
2 g course nomaly ends on e stongly agree y siroraly mets
deeoree
3. The room is adequate for the course. stronaly agree ! stronaly w7
deegree
1.1 leamsd a ot i tis course svongly agree sroroly
deegree

Rm emantics and fi ummer semester 2007

Overall Evaluation of Exercise Class 1
[Overall evalvation(ss2009y]

9% 45% 27% 18% 0%

1. 1'learned a lot in this course. strongly agree T strongly disagree e
mw=2.5
md=2
s=0.9

1 4
09.07.2007 EvaSys Auswertung Seite 5

Rm i i ion of Software Summer semester 2007

Overall Evaluation of Exercise Class 11

Priv.-Doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software

2. 1 would grade the instructor with: n=11
mw=2.6
verygood (1) [] 27.3% s=13
god@ [__] 18.2%
satisfactory (3) [___] 18.2%

sufficient (4) 36.4%

insufficient (5) 0%

3. 1 would grade the course with: =11
mw=2.6
very good (1) 9.1% s=1
good (2) 45.5%
satisfactory (3) 18.2%
insufficient (5) 0%
4. 1 would grade my own effort with: n=11
mw=2.9
very good (1) 0% s=05

good (2) 18.2%

satisfactory (3) 72.7%
sufficient (4) 9.1%

0%

—
|
|
—
| —
sufficient (4) [] 27.3%
|
|
—
O
|

insufficient (5)

Rm er semester 2007

Evaluation Profile of Exercise Class

Priv.-Doz. Drrer.nal. Thomas Noll, Semansik und Verifikation von Soitware:

Profillinie

Teilbereich: Informatik
Name der/des Lehrenden: Priv.-Doz. Dr.rer.nat. Thomas Nol

| Titel der Lehrveranstaltung: - Semantk und Verifikation von Software

& (Name der Umfrage)

1 Lo o s vl i sch . sronlysree qordy mees
iy
PR ———, sty s sporay
i)
. The assignments are oot Jr— y sroray
i)
4. The assignments are application-related strongly agree ! strongly -
N i
N
. Theassignments e careciod cartly. - srordy
oA
P #
IS —— - - worgy mees
ity
T —— S { gy meze
iy
3_ilustrates the content hrough examples. strongly agree \ strongly
i)
N
4 prosertsdesty aranged summares r— worgy s
e
/
. answers usstorsrom stdents cartly: - wordy s
A
[YRR——— S wordy mers
= s
7. discriminates against certain studerts. strongly agree: = strongly =49
P> s,
PP— - srordy
— i)
.l lsosprochast ut o ecr s swonly agree srordy
i)
10 accpis sggesions fom studnts s |y worgy mers
i
1. The corss nomly bgin o e — T
oA
\
2 Ths cour nomatyands on e - woray et
ity
/
. Theconse s ansccaialegroup s avonly s worgy e
i)
\
4 Thaoomis adecal onacouse sty o spordy
i)
N\,
1 e alkin i o oy agee —
et

Rm emantics and fi ummer semester 2007

Possible Improvements

Lecture:
@ Slides more “self—contained”
© Repetition of proof principles

o good for beginners
@ boring for experienced listeners

© Double covering of denotational semantics by Functional
Programming course

Points 2 and 3 perhaps call for a separate, introductory course on
“Universal Algebra”

Rm Semantics and Verification of Software Summer semester 2007

Possible Improvements

Lecture:

@ Slides more “self—contained”
© Repetition of proof principles

o good for beginners
@ boring for experienced listeners

© Double covering of denotational semantics by Functional
Programming course

Points 2 and 3 perhaps call for a separate, introductory course on
“Universal Algebra”

Exercise class:
@ Questions and example solutions more “reliable”
© Comments and suggestions in correction of exercises

© More explanations to solutions?

Rm Semantics and Verification of Software Summer semester 2007

	Repetition: The Interprocedural Fixpoint Solution
	Further Topics in Dataflow Analysis
	Further Topics in Formal Semantics
	Evaluation of the Course

