
Semantics and Verification of Software

Lecture 23: Wrap–Up

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Outline

1 Repetition: The Interprocedural Fixpoint Solution

2 Further Topics in Dataflow Analysis

3 Further Topics in Formal Semantics

4 Evaluation of the Course

Semantics and Verification of Software Summer semester 2007 2

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks D+ as dataflow version of runtime stack)

Non–procedural constructs (skip, assignments, tests):
operate only on topmost element

call: computes new topmost entry from current and pushes it

return: removes topmost entry and combines it with underlying
entry

Semantics and Verification of Software Summer semester 2007 3

The Interprocedural Extension I

Definition (Interprocedural extension (forward analysis))

Let S = (Lab, E, F, (D,⊑), ι, ϕ) be a dataflow system. The
interprocedural extension of S is given by

Ŝ := (Lab, E, F, (D̂, ⊑̂), ι̂, ϕ̂)
where

D̂ := D+

d1 . . . dn ⊑̂ d′1 . . . d′n iff di ⊑ d′
i
for every 1 ≤ i ≤ n

ι̂ := ι ∈ D+

for each l ∈ Lab \ {lc, ln, lx, lr | (lc, ln, lx, lr) ∈ IF},
ϕ̂l : D+ → D+ is given by ϕ̂l(dw) := ϕl(d)w

for each (lc, ln, lx, lr) ∈ IF , ϕ̂l : D+ → D+ is given by

ϕ̂lc(dw) := ϕlc(d)dw

ϕ̂ln(w) := w

ϕ̂lx(w) := w

ϕ̂lr(d
′dw) := d′′w where d′′ := ϕ1

lr
(d) ⊔ ϕ2

lr
(d′)

Semantics and Verification of Software Summer semester 2007 4

The Interprocedural Extension II

Example (Constant Propagation (cf. Lecture 19))

Ŝ := (Lab, E, F, (D̂, ⊑̂), ι̂, ϕ̂) is determined by

D := {δ | δ : Var c → Z ∪ {⊥,⊤}}

⊥ ⊑ z ⊑ ⊤

ι := δ⊤ ∈ D

for each l ∈ Lab \ {lc, ln, lx, lr | (lc, ln, lx, lr) ∈ IF},

ϕl(δ) :=

{

δ if Bl = skip or Bl ∈ BExp

δ[x 7→ AJaKδ] if Bl = (x := a)

whenever p c contains [call P (a, z)]lc
lr

and

proc [P (val x, res y)]ln is c [end]lx ,

call: set input parameter and reset output parameter
ϕlc(δ) := δ[x 7→ AJaKδ, y 7→ ⊤]
return: propagate output parameter to caller by resetting old z

value and copying y to z

ϕ1
lr

(δ) := δ[z 7→ ⊥] ϕ2
lr

(δ′) := δ′[x 7→ ⊥, y 7→ ⊥, z 7→ δ′(y)]

Semantics and Verification of Software Summer semester 2007 5

The Equation System

For an interprocedural dataflow system Ŝ := (Lab, E, F, (D̂, ⊑̂), ι̂, ϕ̂),
the intraprocedural equation system

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l
′, l) ∈ F} otherwise

is extended to a system with three kinds of equations
(for every l ∈ Lab):

for actual dataflow information: AIl ∈ D

(extension of intraprocedural AI)

for single nodes: fl : D+ → D+

(extension of intraprocedural transfer functions)

for flow graphs of complete procedures: Fl : D+ → D+

(Fl(w) yields information at l if surrounding procedure is called
with information w)

Semantics and Verification of Software Summer semester 2007 6

Outline

1 Repetition: The Interprocedural Fixpoint Solution

2 Further Topics in Dataflow Analysis

3 Further Topics in Formal Semantics

4 Evaluation of the Course

Semantics and Verification of Software Summer semester 2007 7

Context–Sensitive Dataflow Analysis

Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns

But: do not distinguish between different procedure calls

AIl =















ι if l ∈ E
⊔

{ϕlc(AIlc) | (lc, ln, lx, lr) ∈ IF} if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(AIl′) | (l
′, l) ∈ F} otherwise

information about calling states combined for all call sites
procedure body only analyzed once using combined information
resulting information used at all return points

=⇒ “context–insensitive”
Alternative: context–sensitive analysis

separate information for different call sites
implementation by “procedure cloning”
more precise
more costly

Semantics and Verification of Software Summer semester 2007 8

Context–Sensitive Dataflow Analysis

Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns

But: do not distinguish between different procedure calls

AIl =















ι if l ∈ E
⊔

{ϕlc(AIlc) | (lc, ln, lx, lr) ∈ IF} if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(AIl′) | (l
′, l) ∈ F} otherwise

information about calling states combined for all call sites
procedure body only analyzed once using combined information
resulting information used at all return points

=⇒ “context–insensitive”
Alternative: context–sensitive analysis

separate information for different call sites
implementation by “procedure cloning”
more precise
more costly

Semantics and Verification of Software Summer semester 2007 8

Context–Sensitive Dataflow Analysis

Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns

But: do not distinguish between different procedure calls

AIl =















ι if l ∈ E
⊔

{ϕlc(AIlc) | (lc, ln, lx, lr) ∈ IF} if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(AIl′) | (l
′, l) ∈ F} otherwise

information about calling states combined for all call sites
procedure body only analyzed once using combined information
resulting information used at all return points

=⇒ “context–insensitive”
Alternative: context–sensitive analysis

separate information for different call sites
implementation by “procedure cloning”
more precise
more costly

Semantics and Verification of Software Summer semester 2007 8

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address;
aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes A = sets of variables (interpretation: x ∈ A iff x

points to concrete node represented by A)
∅ represents all concrete nodes that are not directly reachable
transfer functions transform (sets of) shape graphs

see [Nielson/Nielson/Hankin 2005, Sct. 2.6]
Semantics and Verification of Software Summer semester 2007 9

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address;
aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes A = sets of variables (interpretation: x ∈ A iff x

points to concrete node represented by A)
∅ represents all concrete nodes that are not directly reachable
transfer functions transform (sets of) shape graphs

see [Nielson/Nielson/Hankin 2005, Sct. 2.6]
Semantics and Verification of Software Summer semester 2007 9

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address;
aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes A = sets of variables (interpretation: x ∈ A iff x

points to concrete node represented by A)
∅ represents all concrete nodes that are not directly reachable
transfer functions transform (sets of) shape graphs

see [Nielson/Nielson/Hankin 2005, Sct. 2.6]
Semantics and Verification of Software Summer semester 2007 9

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address;
aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes A = sets of variables (interpretation: x ∈ A iff x

points to concrete node represented by A)
∅ represents all concrete nodes that are not directly reachable
transfer functions transform (sets of) shape graphs

see [Nielson/Nielson/Hankin 2005, Sct. 2.6]
Semantics and Verification of Software Summer semester 2007 9

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address;
aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes A = sets of variables (interpretation: x ∈ A iff x

points to concrete node represented by A)
∅ represents all concrete nodes that are not directly reachable
transfer functions transform (sets of) shape graphs

see [Nielson/Nielson/Hankin 2005, Sct. 2.6]
Semantics and Verification of Software Summer semester 2007 9

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address;
aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes A = sets of variables (interpretation: x ∈ A iff x

points to concrete node represented by A)
∅ represents all concrete nodes that are not directly reachable
transfer functions transform (sets of) shape graphs

see [Nielson/Nielson/Hankin 2005, Sct. 2.6]
Semantics and Verification of Software Summer semester 2007 9

Shape Analysis II

{y} ∅ Z
sel

sel 1

sel2

⇓x← y.sel

{y} {x} Z
sel

sel 1

sel2

∅

{y} {x} Z
sel sel2

sel1

∅

{y} {x} Z
sel sel2

sel1

sel1

∅

{y} {x} Z
sel

sel1

sel2 ∅

{y} {x} Z
sel

sel1

sel1

sel2

Semantics and Verification of Software Summer semester 2007 10

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

To this aim: introduce small–step operational semantics operating
on program labels

〈l0, σ0〉 → . . . 〈ln, σn〉 → σn+1

where li ∈ Lab and σi : Var → Z
Example: correctness of Constant Propagation

Let c0 ∈ Cmd with l0 = init(c0), and let l ∈ Labc0
, x ∈ Var , and

z ∈ Z such that CPl(x) = z. Then for every σ0, σ ∈ Σ such that
〈l0, σ0〉 →

∗ 〈l, σ〉, σ(x) = z.

see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Semantics and Verification of Software Summer semester 2007 11

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

To this aim: introduce small–step operational semantics operating
on program labels

〈l0, σ0〉 → . . . 〈ln, σn〉 → σn+1

where li ∈ Lab and σi : Var → Z
Example: correctness of Constant Propagation

Let c0 ∈ Cmd with l0 = init(c0), and let l ∈ Labc0
, x ∈ Var , and

z ∈ Z such that CPl(x) = z. Then for every σ0, σ ∈ Σ such that
〈l0, σ0〉 →

∗ 〈l, σ〉, σ(x) = z.

see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Semantics and Verification of Software Summer semester 2007 11

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

To this aim: introduce small–step operational semantics operating
on program labels

〈l0, σ0〉 → . . . 〈ln, σn〉 → σn+1

where li ∈ Lab and σi : Var → Z
Example: correctness of Constant Propagation

Let c0 ∈ Cmd with l0 = init(c0), and let l ∈ Labc0
, x ∈ Var , and

z ∈ Z such that CPl(x) = z. Then for every σ0, σ ∈ Σ such that
〈l0, σ0〉 →

∗ 〈l, σ〉, σ(x) = z.

see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Semantics and Verification of Software Summer semester 2007 11

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

To this aim: introduce small–step operational semantics operating
on program labels

〈l0, σ0〉 → . . . 〈ln, σn〉 → σn+1

where li ∈ Lab and σi : Var → Z
Example: correctness of Constant Propagation

Let c0 ∈ Cmd with l0 = init(c0), and let l ∈ Labc0
, x ∈ Var , and

z ∈ Z such that CPl(x) = z. Then for every σ0, σ ∈ Σ such that
〈l0, σ0〉 →

∗ 〈l, σ〉, σ(x) = z.

see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Semantics and Verification of Software Summer semester 2007 11

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

To this aim: introduce small–step operational semantics operating
on program labels

〈l0, σ0〉 → . . . 〈ln, σn〉 → σn+1

where li ∈ Lab and σi : Var → Z
Example: correctness of Constant Propagation

Let c0 ∈ Cmd with l0 = init(c0), and let l ∈ Labc0
, x ∈ Var , and

z ∈ Z such that CPl(x) = z. Then for every σ0, σ ∈ Σ such that
〈l0, σ0〉 →

∗ 〈l, σ〉, σ(x) = z.

see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Semantics and Verification of Software Summer semester 2007 11

Outline

1 Repetition: The Interprocedural Fixpoint Solution

2 Further Topics in Dataflow Analysis

3 Further Topics in Formal Semantics

4 Evaluation of the Course

Semantics and Verification of Software Summer semester 2007 12

Semantics of Functional Languages I

Program = list of function definitions

Simplest setting: first–order function definitions of the form
f(x1, . . . , xn) = t

function name f

formal parameters x1, . . . , xn

term t over (base and defined) function calls and x1, . . . , xn

Operational semantics (only function calls)

call–by–value case:

t1 → z1 . . . tn → zn t[x1 7→ z1, . . . , xn 7→ zn]→ z

f(t1, . . . , tn)→ z

call–by–name case:

t[x1 7→ t1, . . . , xn 7→ tn]→ z

f(t1, . . . , tn)→ z

Semantics and Verification of Software Summer semester 2007 13

Semantics of Functional Languages I

Program = list of function definitions

Simplest setting: first–order function definitions of the form
f(x1, . . . , xn) = t

function name f

formal parameters x1, . . . , xn

term t over (base and defined) function calls and x1, . . . , xn

Operational semantics (only function calls)

call–by–value case:

t1 → z1 . . . tn → zn t[x1 7→ z1, . . . , xn 7→ zn]→ z

f(t1, . . . , tn)→ z

call–by–name case:

t[x1 7→ t1, . . . , xn 7→ tn]→ z

f(t1, . . . , tn)→ z

Semantics and Verification of Software Summer semester 2007 13

Semantics of Functional Languages I

Program = list of function definitions

Simplest setting: first–order function definitions of the form
f(x1, . . . , xn) = t

function name f

formal parameters x1, . . . , xn

term t over (base and defined) function calls and x1, . . . , xn

Operational semantics (only function calls)

call–by–value case:

t1 → z1 . . . tn → zn t[x1 7→ z1, . . . , xn 7→ zn]→ z

f(t1, . . . , tn)→ z

call–by–name case:

t[x1 7→ t1, . . . , xn 7→ tn]→ z

f(t1, . . . , tn)→ z

Semantics and Verification of Software Summer semester 2007 13

Semantics of Functional Languages II

Denotational semantics

program induces call–by–value and call–by–name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

Extensions: higher–order types, data types, ...

see Functional Programming course [Giesl] and [Winskel 1996,
Sct. 9]

Semantics and Verification of Software Summer semester 2007 14

Semantics of Functional Languages II

Denotational semantics

program induces call–by–value and call–by–name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

Extensions: higher–order types, data types, ...

see Functional Programming course [Giesl] and [Winskel 1996,
Sct. 9]

Semantics and Verification of Software Summer semester 2007 14

Semantics of Functional Languages II

Denotational semantics

program induces call–by–value and call–by–name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

Extensions: higher–order types, data types, ...

see Functional Programming course [Giesl] and [Winskel 1996,
Sct. 9]

Semantics and Verification of Software Summer semester 2007 14

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings

Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α
→ P

P
α
→ P ′

P + Q
α
→ P ′

P
α
→ P ′

P ‖ Q
α
→ P ′ ‖ Q

P
α
→ P ′ Q

ᾱ
→ Q′

P ‖ Q
τ
→ P ′ ‖ Q′

. . .

see course on Modelling Concurrent and Probabilistic Systems in
WS 2007/08 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer semester 2007 15

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings

Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α
→ P

P
α
→ P ′

P + Q
α
→ P ′

P
α
→ P ′

P ‖ Q
α
→ P ′ ‖ Q

P
α
→ P ′ Q

ᾱ
→ Q′

P ‖ Q
τ
→ P ′ ‖ Q′

. . .

see course on Modelling Concurrent and Probabilistic Systems in
WS 2007/08 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer semester 2007 15

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings

Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α
→ P

P
α
→ P ′

P + Q
α
→ P ′

P
α
→ P ′

P ‖ Q
α
→ P ′ ‖ Q

P
α
→ P ′ Q

ᾱ
→ Q′

P ‖ Q
τ
→ P ′ ‖ Q′

. . .

see course on Modelling Concurrent and Probabilistic Systems in
WS 2007/08 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer semester 2007 15

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings

Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α
→ P

P
α
→ P ′

P + Q
α
→ P ′

P
α
→ P ′

P ‖ Q
α
→ P ′ ‖ Q

P
α
→ P ′ Q

ᾱ
→ Q′

P ‖ Q
τ
→ P ′ ‖ Q′

. . .

see course on Modelling Concurrent and Probabilistic Systems in
WS 2007/08 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer semester 2007 15

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings

Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α
→ P

P
α
→ P ′

P + Q
α
→ P ′

P
α
→ P ′

P ‖ Q
α
→ P ′ ‖ Q

P
α
→ P ′ Q

ᾱ
→ Q′

P ‖ Q
τ
→ P ′ ‖ Q′

. . .

see course on Modelling Concurrent and Probabilistic Systems in
WS 2007/08 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer semester 2007 15

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings

Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α
→ P

P
α
→ P ′

P + Q
α
→ P ′

P
α
→ P ′

P ‖ Q
α
→ P ′ ‖ Q

P
α
→ P ′ Q

ᾱ
→ Q′

P ‖ Q
τ
→ P ′ ‖ Q′

. . .

see course on Modelling Concurrent and Probabilistic Systems in
WS 2007/08 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer semester 2007 15

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings

Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α
→ P

P
α
→ P ′

P + Q
α
→ P ′

P
α
→ P ′

P ‖ Q
α
→ P ′ ‖ Q

P
α
→ P ′ Q

ᾱ
→ Q′

P ‖ Q
τ
→ P ′ ‖ Q′

. . .

see course on Modelling Concurrent and Probabilistic Systems in
WS 2007/08 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer semester 2007 15

Outline

1 Repetition: The Interprocedural Fixpoint Solution

2 Further Topics in Dataflow Analysis

3 Further Topics in Formal Semantics

4 Evaluation of the Course

Semantics and Verification of Software Summer semester 2007 16

Overall Evaluation of Lecture I

(see http://www-i2.informatik.rwth-aachen.de/i2/svsw/ for full
reports)

Semantics and Verification of Software Summer semester 2007 17

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Overall Evaluation of Lecture II

Semantics and Verification of Software Summer semester 2007 18

Evaluation Profile of Lecture

Semantics and Verification of Software Summer semester 2007 19

Overall Evaluation of Exercise Class I

Semantics and Verification of Software Summer semester 2007 20

Overall Evaluation of Exercise Class II

Semantics and Verification of Software Summer semester 2007 21

Evaluation Profile of Exercise Class

Semantics and Verification of Software Summer semester 2007 22

Possible Improvements

Lecture:

1 Slides more “self–contained”
2 Repetition of proof principles

good for beginners
boring for experienced listeners

3 Double covering of denotational semantics by Functional
Programming course

Points 2 and 3 perhaps call for a separate, introductory course on
“Universal Algebra”

Exercise class:

1 Questions and example solutions more “reliable”

2 Comments and suggestions in correction of exercises

3 More explanations to solutions?

Semantics and Verification of Software Summer semester 2007 23

Possible Improvements

Lecture:

1 Slides more “self–contained”
2 Repetition of proof principles

good for beginners
boring for experienced listeners

3 Double covering of denotational semantics by Functional
Programming course

Points 2 and 3 perhaps call for a separate, introductory course on
“Universal Algebra”

Exercise class:

1 Questions and example solutions more “reliable”

2 Comments and suggestions in correction of exercises

3 More explanations to solutions?

Semantics and Verification of Software Summer semester 2007 23

	Repetition: The Interprocedural Fixpoint Solution
	Further Topics in Dataflow Analysis
	Further Topics in Formal Semantics
	Evaluation of the Course

