
Semantics and Verification of Software

Lecture 2: Operational Semantics of WHILE

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

6 Execution of Statements

Semantics and Verification of Software Summer semester 2007 2

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z

Truth values B = {true, false} t

Variables Var = {x, y, . . .} x

Arithmetic expressions AExp a

Boolean expressions BExp b

Commands (statements) Cmd c

Semantics and Verification of Software Summer semester 2007 3

Syntax of WHILE Programs

Definition (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context–free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is given
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

Semantics and Verification of Software Summer semester 2007 4

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

6 Execution of Statements

Semantics and Verification of Software Summer semester 2007 5

Operational Semantics of WHILE

Idea: define meaning of programs by specifying its behaviour
being executed on an (abstract) machine

Here: evaluation/execution relation for program fragments
(expressions, statements)

Approach based on Structural Operational Semantics (SOS)

G.D. Plotkin: A structural approach to operational

semantics, DAIMI FN-19, Computer Science

Department, Aarhus University, 1981

Employs derivation rules of the form

Premise(s)

Conclusion
Name

meaning: if every premise is fulfilled, then conclusion can be drawn
a rule with no premises is called an axiom

Derivation rules can be composed to form derivation trees with
axioms as leafs (formal definition later)

Semantics and Verification of Software Summer semester 2007 6

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

6 Execution of Statements

Semantics and Verification of Software Summer semester 2007 7

Program States

Meaning of expression = value (in the usual sense)

Depends on the values of the variables in the expression

Definition 2.2 (Program state)

A (program) state is an element of the set

Σ := {σ | σ : Var → Z},
called the state space.

Thus σ(x) denotes the value of x ∈ Var in state σ ∈ Σ.

Semantics and Verification of Software Summer semester 2007 8

Evaluation of Arithmetic Expressions I

Remember: a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

Definition 2.3 (Evaluation relation for arithmetic expressions)

If a ∈ AExp and σ ∈ Σ, then 〈a, σ〉 is called a configuration.

Expression a evaluates to z ∈ Z in state σ (notation: 〈a, σ〉 → z) if this
relationship is derivable by means of the following rules:

Axioms:
〈z, σ〉 → z 〈x, σ〉 → σ(x)

Rules:
〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where z := z1 + z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1-a2, σ〉 → z
where z := z1 − z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1 ∗ z2

Semantics and Verification of Software Summer semester 2007 9

Evaluation of Arithmetic Expressions II

Example 2.4

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 → 7

〈(x+3)*(y-2), σ〉 → 42

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1∗z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where

Here: structure of derivation tree = structure of program fragment
(generally not the case)

Semantics and Verification of Software Summer semester 2007 10

Free Variables

First formal result: value of an expression does not depend on the
valuation of variables which do not occur in the expression

Definition 2.5 (Free variables)

The set of free variables of an expression is given by the function

FV : AExp → 2Var

where

FV (z) := ∅ FV (a1+a2) := FV (a1) ∪ FV (a2)
FV (x) := {x} FV (a1-a2) := FV (a1) ∪ FV (a2)

FV (a1*a2) := FV (a1) ∪ FV (a2)

Result will be shown by structural induction on the expression

Semantics and Verification of Software Summer semester 2007 11

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

6 Execution of Statements

Semantics and Verification of Software Summer semester 2007 12

Excursus: Proof by Structural Induction I

Proof principle

Given: an inductive set, i.e., a set S

which contains certain atomic elements and
which is closed under certain operations

To show: property P (s) applies to every s ∈ S

Proof: we verify:

Induction base: P (s) holds for every atomic element s

Induction hypothesis: assume that P (s1), P (s2) etc.
Induction step: then also P (f(s1, . . . , sn)) holds for every

operation f of arity n

Semantics and Verification of Software Summer semester 2007 13

Excursus: Proof by Structural Induction II

Application: natural numbers (“complete induction”)

Definition: N is the least set which

contains 0 and
contains n + 1 whenever n ∈ N

Induction base: P (0) holds

Induction hypothesis: P (n) holds

Induction step: P (n + 1) holds

Semantics and Verification of Software Summer semester 2007 14

Excursus: Proof by Structural Induction III

Application: arithmetic expressions (Def. 1.2)

Definition: AExp is the least set which

contains all integers z ∈ Z and all variables x ∈ Var

and
contains a1+a2, a1-a2 and a1*a2 whenever
a1, a2 ∈ AExp

Induction base: P (z) and P (x) holds (for every z ∈ Z and x ∈ Var)

Induction hypothesis: P (a1) and P (a2) holds

Induction step: P (a1+a2), P (a1-a2) and P (a1*a2) holds

Semantics and Verification of Software Summer semester 2007 15

Free Variables II

Lemma 2.6

Let a ∈ AExp and σ, σ′ ∈ Σ such that σ(x) = σ′(x) for every

x ∈ FV (a). Then, for every z ∈ Z,

〈a, σ〉 → z ⇐⇒ 〈a, σ′〉 → z.

Proof.

by structural induction on a (on the board)

Semantics and Verification of Software Summer semester 2007 16

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

6 Execution of Statements

Semantics and Verification of Software Summer semester 2007 17

Evaluation of Boolean Expressions I

Remember: b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

Definition 2.7 (Evaluation relation for Boolean expressions)

For b ∈ BExp and σ ∈ Σ, and t ∈ B, the evaluation relation 〈b, σ〉 → t is
defined by the following rules:

〈t, σ〉 → t

〈a1, σ〉 → z 〈a2, σ〉 → z

〈a1=a2, σ〉 → true

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1=a2, σ〉 → false
if z1 6= z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → true
if z1 > z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → false
if z1 ≤ z2

〈b, σ〉 → false

〈¬b, σ〉 → true

〈b, σ〉 → true

〈¬b, σ〉 → false

〈b1, σ〉 → true 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → true

〈b1, σ〉 → true 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → false 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → false 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false

(∨ analogously)

Semantics and Verification of Software Summer semester 2007 18

Evaluation of Boolean Expressions II

Remarks:

Binary Boolean operators ∧ and ∨ are interpreted as strict, i.e.,
always evaluate both arguments.

Important in situations like

while p <> nil and p^.key < val do ...!

(see Assignment 1 for non–strict evaluation)

FV : BExp → 2Var can be defined in analogy to Def. 2.5.

Lemma 2.6 holds analogously for Boolean expressions, i.e., the
value of b ∈ BExp does not depend on variables in Var \ FV (b).

Semantics and Verification of Software Summer semester 2007 19

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

6 Execution of Statements

Semantics and Verification of Software Summer semester 2007 20

Meaning of Statements

Effect of statement = transformation of program state

Example:

〈x := 2+3, σ〉 → σ[x 7→ 5]

where for every σ ∈ Σ, x, y ∈ Var , and z ∈ Z:

σ[x 7→ z](y) :=

{

z if y = x

σ(y) otherwise

Semantics and Verification of Software Summer semester 2007 21

Execution of Statements

Remember:

c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Definition 2.8 (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined
by the following rules:

〈skip, σ〉 → σ
(skip)

〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]
(asgn)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(seq)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(if–t)

〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(if–f)

〈b, σ〉 → false

〈while b do c, σ〉 → σ
(wh–f)

〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′
(wh–t)

Semantics and Verification of Software Summer semester 2007 22

Non–Terminating Statements

Corollary 2.9

The execution relation for statements is not total, i.e., there exist

c ∈ Cmd and σ ∈ Σ such that 〈c, σ〉 → σ′ for no σ′ ∈ Σ.

Proof.

Counterexample: c = while true do skip

(by contradiction; on the board)

Semantics and Verification of Software Summer semester 2007 23

	Repetition: Syntax of WHILE
	Operational Semantics of WHILE
	Evaluation of Arithmetic Expressions
	Excursus: Proof by Structural Induction
	Evaluation of Boolean Expressions
	Execution of Statements

