Semantics and Verification of Software

Lecture 3: Operational Semantics of WHILE

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Evaluation and Execution Relations

Rm Semantics and Verification of Software Summer semester 2007

Evaluation of Arithmetic Expressions

Remember: a ::=z |z | a;+ay | a1-az | ar*ap € AEzp

Definition (Evaluation relation for arithmetic expressions)

If a € AEzp and o € X, then (a, o) is called a configuration.

Expression a evaluates to z € Z in state o (notation: (a,o) — z) if this
relationship is derivable by means of the following rules:

Axi S:
M) =2 (@o) — o)

(a1,0) — z1 (az,0) — 22

Rules: where z := z1 + 2

ai+ap, o) — z

a1, 0) = 21 (az,0) = 2 where z 1= 21 — 22

— 21 {(a2,0) = 2
where z := 21 * 22

(
)
(a1-ap,0) — z
)
(

ai*az, o) — z

m' Semantics and Verification of Software Summer semester 2007

Evaluation of Boolean Expressions

Remember: b::=1 | ay=ay | ay>az | =b | by Aby | b1V by € BExp

Definition (Evaluation relation for Boolean expressions)

For b € BExp and o € ¥, and ¢ € B, the evaluation relation (b, o) — ¢ is
defined by the following rules:
(t,o) =t
(a1,0) — z (ap,0) — 2 (a1,0) = z1 (ag,0) — 22 £
(a1=ay,0) — true (a1=ay, o) — false if21 7 22
<(L1,0’>—>Zl <a2,0>—>22 i > <a1,0>—>21 <a2,0>—>22 i<z
(a1>ag, o) — true R (a1>ay, o) — false 1=
(b, o) — false (b,0) — true
(—b, o) — true (—b, o) — false
(b1,0) — true (bp,0) — true (b1,0) — true (b, o) — false
(b1 A by, o) — true (b1 A by, o) — false
(b1,0) — false (bp, o) — true (b1,0) — false (by, o) — false
(b1 A by, o) — false (b1 A by, 0) — false
(Vv analogously)

m Semantics and Verification of Software Summer semester 2007

Execution of Statements

Remember:
c:=skip|x :=a|c1;cp | if b then ¢; else ¢ | while b do ¢ € Omd

Definition (Execution relation for statements)

For ¢ € Cmd and 0,0’ € L, the execution relation (¢,0) — ¢’ is defined
by the following rules:
. (0,0) - -
— (8Kl
(skip,0) — o P (x :=a,0) — o[z 2]
(c1,0) — o' {(cp,0"y — o”

(asgn)

(seq) (b,o) — true (c1,0) — o’
(c13¢0,0) — a” (if b then ¢ else ¢p,0) — 0’
(b,o) — false (cp,0) — o’

(if-t)

(b, o) — false
(while bdo ¢,0) — o
(b,0) — true (¢,0) — o’ (while b do ¢,0’) — o”

(while b do ¢,0) — o”

(if-f)

- : (wh-f)
(if b then c; else ¢,0) — 0

(wh-t)

m' Semantics and Verification of Software Summer semester 2007

© An Execution Example

Rm S i ification of Software Summer semester 2007

An Execution Example

Example 3.4

@ c:=y :=1; while—(x=1)doy := y*x;x := x-1
—— —

b c1 Cc2

<
o Claim: (c,0) — 01,6 for every o € ¥ with o(x) =3

o Notation: 0;; means o(x) =1, o(y) =j

@ Derivation tree: on the board

m' Semantics and Verification of Software Summer semester 2007

© Determinism of Evaluation/Execution

Rm Semantics and Verification of Software Summer semester 2007

Determinism of Execution Relation 1

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Omd and o,0',0" € ¥ such that (c,0) — o' and {(c,c) — ", then
/ !

o =dod".

The proof is based on the corresponding result for expressions.

m' Semantics and Verification of Software Summer semester 2007

Determinism of Evaluation Relations

Q For everya € AExp, 0 € X, and 2,2 € Z: {a,0) — z and
(a,0) — 2" implies z = 2.

Q For everyb e BExp, 0 € X, and t,t' € B: (b,o) —t and (b,o) — t/
implies t = t'.

Remark: Lemma 3.6 is not implied by Lemma 2.6
(“olrv) = lrve = ((a,0) — 2z <= (a,0") — 2)")!

The latter just implies
{z€Z]|(a,0) =2} ={2€7Z](a,0') — z}
while Lemma 3.6 states that
HzeZ|(a,0) — 2z} <1.

m' Semantics and Verification of Software Summer semester 2007

Excursus: Proof by Structural Induction IV

Application: Boolean expressions (Def. 1.2)

Definition: BFExp is the least set which
@ contains the truth values t € B and, for every
ai,as € AExp, ai1=ap and ai;>ap, and
@ contains —by, by A by and by V by whenever
b1,bo € BExp
Induction base: P(t), P(ai=az) and P(ai>ay) holds
(for every t € B, a1,a2 € AEzp)
Induction hypothesis: P(b1) and P(b2) holds

Induction step: P(=b1), P(b1 A bz) and P(by V by) holds

Proof (Lemma 3.6).

O by structural induction on a (omitted)

@ by structural induction on b (omitted)

m' Semantics and Verification of Software Summer semester 2007

Determinism of Execution Relation I1

e How to prove that (c,0) — ¢’ is deterministic (Theorem 3.5)?

@ Idea: use induction on the syntactic structure of ¢

Rm Semantics and Verification of Software Summer semester 2007

Excursus: Proof by Structural Induction V

Application: syntax of WHILE statements (Def. 1.2)

Definition: Cmd is the least set which
o contains skip and, for every x € Var and a € AFxp,
x := a, and
@ contains cj;cp, if b then ¢; else ¢ and
while b do ¢; whenever b € BExp and c1,co € Cmd
Induction base: P(skip) and P(z := a) holds
(for every x € Var and a € AExp)

Induction hypothesis: P(c1) and P(cp) holds

Induction step: P(c1;c2), P(if b then c¢; else ¢p) and
P(while b do ¢;) holds

m Semantics and Verification of Software Summer semester 2007

Determinism of Execution Relation III

Remark:
@ But: proof of Theorem 3.5 fails!
@ Problematic case:

¢ =while b do ¢g where (b, o) — true

@ Here (c,0) — o' and (c¢,0) — 0" yield 01,02 € ¥ such that

(b,o) — true (cg,0) — o1 {(c,01) — o’

(c,0) — o (wh-t)

and Y
(b,o) — true (cg,0) — 02 (c,02) — 0 (wh 1)

(c,0) = 0"

@ cg proper substatement of ¢
—> induction hypothesis yields o1 = o2
@ c¢ not proper substatement of ¢ = conclusion ¢’ = ¢” invalid!

Rm Semantics and Verification of Software Summer semester 2007

Excursus: Proof by Structural Induction VI

Application: derivation trees of execution relation (Def. 3.3)

(skip): for every o € ¥, ——————— is a derivation tree for (skip,o) — o
(skip,0) — o
(asgn): if s is a derivation tree for (a,o) — z (Def. 2.3), then
s

is a derivation tree for (z := a,0) — o[z — 2]
(z:=a,0) — oz — 2]
(seq): if s1 and sy are derivation trees for {c1,0) — o’ and, respectively,

s s
172” is a derivation tree for {(c1;c2,0) — o’
(c15¢2,0) = o

(if-t): if s1 and sy are derivation trees for (b, o) — true (Def. 2.7) and,

. , 51 $2 .
respectively, (c1,0) — o, then — ~is a
(if b then c; else ¢p,0) — o

derivation tree for (if b then c; else cp,0) — o’
(iff): analogously
(wh-t): if s1, sp and s3 are derivation trees for (b, c) — true (Def. 2.7), {(c,0) — o’

s s s
and (while b do c¢,0’) — o'/, respectively, then 1 2 3 o is a
(while b do ¢,0) — o

(ca,0"y — o', then

derivation tree for (while b do ¢,o) — o’/
(wh-f): if s is a derivation tree for (b, o) — false (Def. 2.7), then
s

is a derivation tree for (while b do ¢,0) — o

(while b do ¢,0) — o

m' Semantics and Verification of Software Summer semester 2007

Excursus: Proof by Structural Induction VII

Application: derivation trees of execution relation (continued)

Induction base: P () holds for every o € ¥, and P(s) holds for

(skip,0) — o
every derivation tree s for an arithmetic or Boolean expression.

Induction hypothesis: P(s1), P(s2) und P(s3) holds.

Induction step: it also holds that

S1

(asgn): P ((r:=a,0) — oz — Z])
e 51 52

(cr15¢0,0) — o

(if-t): P (ik =)

(if b then c¢1 else c,0) — o’
(iff): analogously
S1 S2 S3
h-t): P
(wh-t) (while b do ¢,0) — U”)

. 81
(wh-A): P ((while b do ¢,0) — O‘)

m' Semantics and Verification of Software Summer semester 2007

Determinism of Execution Relation IV

To show:

<C,(T> —>0‘/,<C,0> o — o ="

(by structural induction on derivation trees; on the board) O

Rm Semantics and Verification of Software Summer semester 2007

	Repetition: Evaluation and Execution Relations
	An Execution Example
	Determinism of Evaluation/Execution

