Semantics and Verification of Software

Lecture 4: Operational and Denotational Semantics

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Execution of Statements

Rm Semantics and Verification of Software Summer semester 2007

Execution of Statements

Remember:
c:=skip|x :=a|c1;cp | if b then ¢; else ¢ | while b do ¢ € Omd

Definition (Execution relation for statements)

For ¢ € Cmd and 0,0’ € L, the execution relation (¢,0) — ¢’ is defined
by the following rules:
. (0,0) - -
— (8Kl
(skip,0) — o P (x :=a,0) — o[z 2]
(c1,0) — o' {(cp,0"y — o”

(asgn)

(seq) (b,o) — true (c1,0) — o’
(c13¢0,0) — a” (if b then ¢ else ¢p,0) — 0’
(b,o) — false (cp,0) — o’

(if-t)

(b, o) — false
(while bdo ¢,0) — o
(b,0) — true (¢,0) — o’ (while b do ¢,0’) — o”

(while b do ¢,0) — o”

(if-f)

- : (wh-f)
(if b then c; else ¢,0) — 0

(wh-t)

m' Semantics and Verification of Software Summer semester 2007

Determinism of Execution Relation

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Omd and o,0',0" € ¥ such that (c,0) — o' and {(c,c) — ", then
/ !

o =dod".

by structural induction on derivation trees

m' Semantics and Verification of Software Summer semester 2007

© Functional of the Operational Semantics

Rm Semantics and Verification of Software Summer semester 2007

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the
following definition:

Definition 4.3 (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (X -» X),
assigns to every statement ¢ € C'md a partial state transformation
Olfc] : £ -» X, which is defined as follows:
/

oo = o if (¢,0) — o' for some ¢/ € ©
9= \undefined otherwise

Remark: Ofc]o can indeed be undefined
(consider e.g. ¢ = while true do skip; see Corollary 2.9)

m Semantics and Verification of Software Summer semester 2007

Eqivalence of Statements

Definition 4.4 (Operational equivalence)

Two statements c1,cp € Cmd are called (operationally) equivalent
(notation: ¢; ~ ¢p) if

Ofe1] = Olez].

Thus:
0 1 ~ ¢ iff Ofcr]o = Ofep]o for every o €
o In particular, Ofci]o is undefined iff Ofca]o is undefined

m' Semantics and Verification of Software Summer semester 2007

“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

For every b € BExp and c € Cmd,

while b do ¢ ~ if b then (c;while b do ¢) else skip.

on the board O

m Semantics and Verification of Software Summer semester 2007

© Summary: Operational Semantics

Rm Semantics and Verification of Software Summer semester 2007

Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using operational rules

Enables proofs about operational behaviour of programs using
structural induction

Semantic functional characterizes complete input/output
behaviour of programs

Rm Semantics and Verification of Software Summer semester 2007

@ The Denotational Approach

Rm Semantics and Verification of Software Summer semester 2007

Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output
behaviour

o In operational semantics: indirect definition of semantic functional
O[.] by execution relation

@ Now: abstract from operational details

@ Denotational semanics: direct definition of program effect by
induction on its syntactic structure

Rm Semantics and Verification of Software Summer semester 2007

@ Denotational Semantics of Expressions

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 4.6 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,
A[] : AEzp — (X — 2),
is given by:
Alz]o = = Alar+az]o = Afai]o + Alaz]o

Wlz]o = o(z) Alar-az]o = Ufai]o — Alaz]o
Wlar*az]o == Ufai]o * Afaz]o

m Semantics and Verification of Software Summer semester 2007

Semantics of Boolean Expressions

Definition 4.7 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,
B[.] : BEzp — (X — B),
is given by:
Bft]o =t
Blao = {5, el =l
Blauis = {1 1ol > e
B = (e otheraine
s - {52 3 =
B V bo]o = :";‘LS: i)ftﬂl;ﬂ]; — Bba]o = false

m Semantics and Verification of Software Summer semester 2007

© Denotational Semantics of Statements

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Statements 1

@ Now: semantic functional
C[.]: Cmd — (£ -»X)
@ Same type as operational functional
O]: Cmd — (X -» X)
(in fact, both will turn out to be the same)

@ Inductive definition employs auxiliary functions:

¢ identity on states: idy : X > X :0+— 0
o (strict) composition of partial state transformations:
o (E-X)x(E-X)—=(X--X)
where, for every f,g: % -» ¥ and 0 € L,
o if f(o) defined
(g0 f)(o) := {g(f() f(o)

undefined otherwise

o semantic conditional:
cond: (Z—-B)x(Z-D)x(X-X)—(X-Y)
where, for every p: L -+ B, f,g: X - X ando € ¥,

cond(p, f,9)(0) == {f (o) if p(o) = true

g(c) otherwise

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Statements 11

Definition 4.8 (Denotational semantics of statements)

The (denotational) semantic functional for statements,
Cl.]: Cmd — (X -- X),
is given by:
¢[skip] := idx
Clz :=a]o := o[z — Aa]o]
Q:[[C]_;CQ]] = Q:[[Cz]] o Q:[[Cl]]

C[if b then c¢; else 2] := cond(B[b], €[c1], €[c2])
¢[while b do c] := fix(P)

where @ : (X > X) — (X -» X) : f > cond(B[b], f o €[c],idx)

m' Semantics and Verification of Software Summer semester 2007

Semantics of Statements 111

Remarks:
@ Definition of €[c] given by induction on syntactic structure of
ceCmd

o in particular, €[while b do] only refers to B[b] and €[c]
(and not to €[while b do] again)
o note difference to O[c]:

(b,0) — true {¢,0) — ¢’ (while b do ¢,0’) — o”

h-t
(while b do ¢,0) — o (wht)
o In €fcg; 2] i= €[cz] o €[e1], function composition o has to be
strict since non—termination of ¢; implies non—termination of c; ;¢
o In ¢[while b do] := fix(®P), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”

But: why fixpoints?

Rm Semantics and Verification of Software Summer semester 2007

@ Fixpoint Semantics of while Loop

Rm Semantics and Verification of Software Summer semester 2007

Fixpoint Semantics of while Loop I

o Goal: preserve validity of equivalence
¢[while b do ¢] = €[if b then (c;while b do ¢) else skip]
(cf. Lemma 4.5)
@ Using the known parts of Def. 4.8, we obtain:

C[while b do]
= (C[if b then (c;while b do c) else skip]
= cond(B[b], €[c;while b do], €[skip])
= cond(B[b], €[while b do] o €[], idy)

o Abbreviating f := €[while b do ¢] this yields:
f=cond(B[b], f o €[c],idyx)
o Hence f must be a solution of this recursive equation
o Or: f must be a fixpoint of the mapping
d: (X -X)—= (X -->X): fr cond(B[b], f o €[c],idy)
(since the equation can be stated as f = ®(f))

m' Semantics and Verification of Software Summer semester 2007

Fixpoint Semantics of while Loop II

But: fixpoint property not sufficient to obtain a well-defined semantics
Existence: there does no need to exist any fixpoint. Examples:
Q@ ¢1:N—N:n— n-+1has no fixpoint

(Y Ly g1 it f =g
QP (E-Y)—=(XE-%): fr— {92 otherwise

(where g1 # ¢2) has no fixpoint

Uniqueness: there might exist several fixpoints. Examples:
Q ¢ : N — N:n+ n has fixpoints {0,1}
@ every state transformation f is a fixpoint of
O (YY) (X)) f—f

Rm Semantics and Verification of Software Summer semester 2007

Fixpoint Semantics of while Loop III

Solution:

Existence: we will show that this cannot happen in our setting, i.e.,
that fixpoints always exist

Uniqueness: will be guaranteed by choosing a special fixpoint

Rm Semantics and Verification of Software Summer semester 2007

	Repetition: Execution of Statements
	Functional of the Operational Semantics
	Summary: Operational Semantics
	The Denotational Approach
	Denotational Semantics of Expressions
	Denotational Semantics of Statements
	Fixpoint Semantics of while Loop

