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Execution of Statements

Remember:
c:=skip|x :=a|c1;cp | if b then ¢; else ¢ | while b do ¢ € Omd

Definition (Execution relation for statements)

For ¢ € Cmd and 0,0’ € L, the execution relation (¢,0) — ¢’ is defined
by the following rules:
. (0,0) - -
— (8Kl
(skip,0) — o P (x :=a,0) — o[z 2]
(c1,0) — o' {(cp,0"y — o”

(asgn)

(seq) (b,o) — true  (c1,0) — o’
(c13¢0,0) — a” (if b then ¢ else ¢p,0) — 0’
(b,o) — false  (cp,0) — o’

(if-t)

(b, o) — false
(while bdo ¢,0) — o
(b,0) — true (¢,0) — o’ (while b do ¢,0’) — o”

(while b do ¢,0) — o”

(if-f)

- : (wh-f)
(if b then c; else ¢,0) — 0

(wh-t)
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Determinism of Execution Relation

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Omd and o,0',0" € ¥ such that (c,0) — o' and {(c,c) — ", then
/ !

o =dod".

by structural induction on derivation trees
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© Functional of the Operational Semantics
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Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the
following definition:

Definition 4.3 (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (X -» X),
assigns to every statement ¢ € C'md a partial state transformation
Olfc] : £ -» X, which is defined as follows:
/

oo = o if (¢,0) — o' for some ¢/ € ©
9= \undefined otherwise

Remark: Ofc]o can indeed be undefined
(consider e.g. ¢ = while true do skip; see Corollary 2.9)
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Eqivalence of Statements

Definition 4.4 (Operational equivalence)

Two statements c1,cp € Cmd are called (operationally) equivalent
(notation: ¢; ~ ¢p) if

Ofe1] = Olez].

Thus:
0 1 ~ ¢ iff Ofcr]o = Ofep]o for every o €
o In particular, Ofci]o is undefined iff Ofca]o is undefined
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“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

For every b € BExp and c € Cmd,

while b do ¢ ~ if b then (c;while b do ¢) else skip.

on the board O
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© Summary: Operational Semantics
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Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using operational rules

Enables proofs about operational behaviour of programs using
structural induction

Semantic functional characterizes complete input/output
behaviour of programs
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@ The Denotational Approach
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Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output
behaviour

o In operational semantics: indirect definition of semantic functional
O[.] by execution relation

@ Now: abstract from operational details

@ Denotational semanics: direct definition of program effect by
induction on its syntactic structure
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@ Denotational Semantics of Expressions
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Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 4.6 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,
A[] : AEzp — (X — 2),
is given by:
Alz]o = = Alar+az]o = Afai]o + Alaz]o

Wlz]o = o(z) Alar-az]o = Ufai]o — Alaz]o
Wlar*az]o == Ufai]o * Afaz]o
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Semantics of Boolean Expressions

Definition 4.7 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,
B[.] : BEzp — (X — B),
is given by:
Bft]o =t
Blao = {5, el =l
Blauis = {1 1ol > e
B = (e otheraine
s - {52 3 =
B V bo]o = :";‘LS: i)ftﬂl;ﬂ]; — Bba]o = false

m Semantics and Verification of Software Summer semester 2007



© Denotational Semantics of Statements
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Semantics of Statements 1

@ Now: semantic functional
C[.]: Cmd — (£ -»X)
@ Same type as operational functional
O]: Cmd — (X -» X)
(in fact, both will turn out to be the same)

@ Inductive definition employs auxiliary functions:

¢ identity on states: idy : X > X :0+— 0
o (strict) composition of partial state transformations:
o (E-X)x(E-X)—=(X--X)
where, for every f,g: % -» ¥ and 0 € L,
o if f(o) defined
(g0 f)(o) := {g(f( ) f(o)

undefined otherwise

o semantic conditional:
cond: (Z—-B)x(Z-D)x(X-X)—(X-Y)
where, for every p: L -+ B, f,g: X - X ando € ¥,

cond(p, f,9)(0) == {f (o) if p(o) = true

g(c) otherwise
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Semantics of Statements 11

Definition 4.8 (Denotational semantics of statements)

The (denotational) semantic functional for statements,
Cl.]: Cmd — (X -- X),
is given by:
¢[skip] := idx
Clz :=a]o := o[z — Aa]o]
Q:[[C]_;CQ]] = Q:[[Cz]] o Q:[[Cl]]

C[if b then c¢; else 2] := cond(B[b], €[c1], €[c2])
¢[while b do c] := fix(P)

where @ : (X > X) — (X -» X) : f > cond(B[b], f o €[c],idx)
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Semantics of Statements 111

Remarks:
@ Definition of €[c] given by induction on syntactic structure of
ceCmd

o in particular, €[while b do ] only refers to B[b] and €[c]
(and not to €[while b do ] again)
o note difference to O[c]:

(b,0) — true {¢,0) — ¢’ (while b do ¢,0’) — o”

h-t
(while b do ¢,0) — o (wht)
o In €fcg; 2] i= €[cz] o €[e1], function composition o has to be
strict since non—termination of ¢; implies non—termination of c; ;¢
o In ¢[while b do ] := fix(®P), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”

But: why fixpoints?
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@ Fixpoint Semantics of while Loop
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Fixpoint Semantics of while Loop I

o Goal: preserve validity of equivalence
¢[while b do ¢] = €[if b then (c;while b do ¢) else skip]
(cf. Lemma 4.5)
@ Using the known parts of Def. 4.8, we obtain:

C[while b do ]
= (C[if b then (c;while b do c) else skip]
= cond(B[b], €[c;while b do ], €[skip])
= cond(B[b], €[while b do ] o €[], idy)

o Abbreviating f := €[while b do ¢] this yields:
f=cond(B[b], f o €[c],idyx)
o Hence f must be a solution of this recursive equation
o Or: f must be a fixpoint of the mapping
d: (X -X)—= (X -->X): fr cond(B[b], f o €[c],idy)
(since the equation can be stated as f = ®(f))
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Fixpoint Semantics of while Loop II

But: fixpoint property not sufficient to obtain a well-defined semantics
Existence: there does no need to exist any fixpoint. Examples:
Q@ ¢1:N—N:n— n-+1has no fixpoint

(Y Ly g1 it f =g
QP (E-Y)—=(XE-%): fr— {92 otherwise

(where g1 # ¢2) has no fixpoint

Uniqueness: there might exist several fixpoints. Examples:
Q ¢ : N — N:n+ n has fixpoints {0,1}
@ every state transformation f is a fixpoint of
O (YY) (X)) f—f
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Fixpoint Semantics of while Loop III

Solution:

Existence: we will show that this cannot happen in our setting, i.e.,
that fixpoints always exist

Uniqueness: will be guaranteed by choosing a special fixpoint
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