Semantics and Verification of Software

Lecture 5: Basic Fixpoint Theory

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Denotational Semantics

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Statements 11

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,
Cl.]: Cmd — (X -- X),
is given by:
¢[skip] := idx
Clz :=a]o := o[z — Aa]o]
Q:[[C]_;CQ]] = Q:[[Cz]] o Q:[[Cl]]

C[if b then c¢; else 2] := cond(B[b], €[c1], €[c2])
¢[while b do c] := fix(P)

where @ : (X > X) — (X -» X) : f > cond(B[b], f o €[c],idx)

m' Semantics and Verification of Software Summer semester 2007

Why Fixpoints?

@ Goal: preserve validity of equivalence
C[while b do ¢] = €[if b then (c;while b do ¢) else skip]

Using the known parts of Def. 4.8, we obtain:

C[while b do]
= (C[if b then (c;while b do c) else skip]
= cond(B[b], €[c;while b do], €[skip])
= cond(B[b], €[while b do] o €[], idy)

©

Abbreviating f := €[while b do ¢] this yields:
f=cond(B[b], f o €[c],idyx)
Hence f must be a solution of this recursive equation

Or: f must be a fixpoint of the mapping
d: (X -X)—= (X -->X): fr cond(B[b], f o €[c],idy)
(since the equation can be stated as f = ®(f))

m' Semantics and Verification of Software Summer semester 2007

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics
Existence: there does no need to exist any fixpoint. Examples:

O ¢1:N— N:n+— n+1 has no fixpoint

(s B . g1 if f=g
@ ¢:(X-1)—(x %Z)'f'_){gz otherwise

(where g1 # ¢2) has no fixpoint
Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:
Q ¢ : N — N:n+ n has fixpoints {0,1}
@ every state transformation f is a fixpoint of
O (X)) (X)) f—f
Solution: guaranteed by choosing a special fixpoint

Rm Semantics and Verification of Software Summer semester 2007

© Characterization of fix(®)

Rm Semantics and V tion of Software Summer semester 2007

Characterization of fix(®) I

o Let b € BExp and ¢ € Cmd

Rm Semantics and Verification of Software Summer semester 2007

Characterization of fix(®) I

o Let b € BExp and ¢ € Cmd
o Let ®(f) := cond(B[b], f o €[c],idyx)

Rm Semantics and Verification of Software Summer semester 2007

Characterization of fix(®) I

o Let b € BExp and ¢ € Cmd
o Let ®(f) := cond(B[b], f o €[c],idyx)
o Let fo: X -» X be a fixpoint of ®, i.e., ®(fo) = fo

Rm Semantics and Verification of Software Summer semester 2007

Characterization of fix(®) I

o Let b € BExp and ¢ € Cmd

o Let ®(f) := cond(B[b], f o €[c],idyx)

o Let fo: X -» X be a fixpoint of ®, i.e., ®(fo) = fo

o Given some initial state og € X, we will distinguish the following
cases:

@ loop while b do ¢ terminates after n iterations (n € N)

© body c diverges in the nth iteration (since it contains a
non-terminating while statement)

© loop while b do c itself diverges

Rm Semantics and Verification of Software Summer semester 2007

Case 1: Termination of Loop

o Loop while b do ¢ terminates after n iterations (n € N)

Rm Semantics and Verification of Software Summer semester 2007

Case 1: Termination of Loop

o Loop while b do ¢ terminates after n iterations (n € N)

@ Formally: there exist o1,...,0, € X such that
true f0<i<n
B[b]oi = {false ifi=n and
Clcoi = oita forevery 0<i<n

Rm Semantics and Verification of Software Summer semester 2007

Case 1: Termination of Loop

o Loop while b do ¢ terminates after n iterations (n € N)

@ Formally: there exist o1,...,0, € X such that
true f0<i<n
B[b]oi = {false ifi=n and
Clcoi = oita forevery 0<i<n

@ Now the definition
®(f) := cond(B[b], f o €[c],idy) implies, for every 0 < i < n,
®(fo)(0:) = (fo o €[c])(o;) since B[b]o; = true
= fO(Uz'—f—l) and
d(fo)(on) = on since B[b]o,, = false

Rm Semantics and Verification of Software Summer semester 2007

Case 1: Termination of Loop

o Loop while b do ¢ terminates after n iterations (n € N)

@ Formally: there exist o1,...,0, € X such that
true f0<i<n
Blb]oi = {false ifi=n and
Clcoi = oita forevery 0<i<n
@ Now the definition
®(f) := cond(B[b], f o €[c],idy) implies, for every 0 < i < n,
®(fo)(0:) = (fo o €[c])(o;) since B[b]o; = true
= fO(Uz'—f—l) and
d(fo)(on) = on since B[b]o,, = false
@ Since ®(fo) = fo it follows that
N fO(Ui—i-l) ifo<i<n
foloi) = {Un ifi=n
and hence

fo(oo) = folo1) = ... fo(on) = on

m' Semantics and Verification of Software Summer semester 2007

Case 1: Termination of Loop

o Loop while b do ¢ terminates after n iterations (n € N)

@ Formally: there exist o1,...,0, € X such that
true f0<i<n
B[b]oi = {false ifi=n and
Clcoi = oita forevery 0<i<n

@ Now the definition
®(f) := cond(B[b], f o €[c],idy) implies, for every 0 < i < n,
®(fo)(0:) = (fo o €[c])(o;) since B[b]o; = true
= fO(Uz'—f—l) and

d(fo)(on) = on since B[b]o,, = false

@ Since ®(fo) = fo it follows that
N f0(0i+1) ifo<i<n
foloi) = {crn ifi=n

and hence

fo(oo) = folo1) = ... fo(on) = on

= All fixpoints coincide on og!

Rm Semantics and Verification of Software Summer semester 2007

Case 2: Divergence of Body

@ Body ¢ diverges in the nth iteration (since it contains a
non—terminating while statement)

Rm Semantics and Verification of Software Summer semester 2007

Case 2: Divergence of Body

@ Body ¢ diverges in the nth iteration (since it contains a
non—terminating while statement)

o Formally: there exist o1,...,0,-1 € X such that

B[b]o; = true for every 0 <i < n and
¢lor = {UHI fo<i<n-—2

undefined ifi=n-1

Rm Semantics and Verification of Software Summer semester 2007

Case 2: Divergence of Body

@ Body ¢ diverges in the nth iteration (since it contains a
non—terminating while statement)

o Formally: there exist o1,...,0,-1 € X such that

B[b]o; = true for every 0 <i < n and

(o if0<i<n-—2
Cefo: = {undeﬁned ifi=n-—1

@ Just as in the previous case (setting o, := undefined) it follows
that

fo(oo) = undefined

Rm Semantics and Verification of Software Summer semester 2007

Case 2: Divergence of Body

@ Body ¢ diverges in the nth iteration (since it contains a
non—terminating while statement)

o Formally: there exist o1,...,0,-1 € X such that

B[b]o; = true for every 0 <i < n and

(o if0<i<n-—2
Cefo: = {undeﬁned ifi=n-—1

@ Just as in the previous case (setting o, := undefined) it follows
that
fo(oo) = undefined

= Again all fixpoints coincide on og!

Rm Semantics and Verification of Software Summer semester 2007

Case 3: Divergence of Loop

@ Loop while b do c diverges

Rm Semantics and Verification of Software Summer semester 2007

Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist o1,05,... € X such that

B[b]o; = true and
Clc]o; = oi41 for every i € N

Rm Semantics and Verification of Software Summer semester 2007

Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist o1,05,... € X such that

B[b]o; = true and
Clc]o; = oi41 for every i € N

@ Here only derivable:

foloo) = fo(o;) for every i € N

Rm Semantics and Verification of Software Summer semester 2007

Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist o1,05,... € X such that

B[b]o; = true and
Clc]o; = oi41 for every i € N

@ Here only derivable:

foloo) = fo(o;) for every i € N

= Value of fy(0p) not determined!

Rm Semantics and Verification of Software Summer semester 2007

For ®(fp) = fo and initial state o9 € X, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fo(o0) = oy
© Body c diverges in the nth iteration
— fo(op) = undefined
© Loop while b do c diverges
— mno condition on fy (only fo(co) = fo(o;) for every i € N)

Rm Semantics and Verification of Software Summer semester 2007

For ®(fp) = fo and initial state o9 € X, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fo(o0) = oy
© Body c diverges in the nth iteration
— fo(op) = undefined
© Loop while b do c diverges
— mno condition on fy (only fo(co) = fo(o;) for every i € N)

o Not surprising since, e.g., while true do skip yields for every
fir—-%

®(f) = cond(B[true], f o €[skip],idy) = f

m' Semantics and Verification of Software Summer semester 2007

For ®(fp) = fo and initial state o9 € X, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fo(o0) = oy
© Body c diverges in the nth iteration
— fo(op) = undefined
© Loop while b do c diverges
— mno condition on fy (only fo(co) = fo(o;) for every i € N)

o Not surprising since, e.g., while true do skip yields for every
f:X--X
®(f) = cond(B[true], f o €[skip],idy) = f
@ On the other hand, our operational understanding requires, for
every og € X,

¢[while true do skip]op = undefined

m' Semantics and Verification of Software Summer semester 2007

For ®(fp) = fo and initial state o9 € X, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fo(o0) = oy
© Body c diverges in the nth iteration
— fo(op) = undefined
© Loop while b do c diverges
— mno condition on fy (only fo(co) = fo(o;) for every i € N)

o Not surprising since, e.g., while true do skip yields for every
fir—-%
®(f) = cond(B[true], f o €[skip],idy) = f
@ On the other hand, our operational understanding requires, for
every og € X,
¢[while true do skip]op = undefined

fix(®) is the least defined fixpoint of ®.

m' Semantics and Verification of Software Summer semester 2007

Making it Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g: X -» X, let
fCg < foreveryo,0/ €X: f(o)=0" = g(o) =0’

(g is “at least as defined” as f)

Rm Semantics and Verification of Software Summer semester 2007

Making it Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g: X -» X, let
fCg < foreveryo,0/ €X: f(o)=0" = g(o) =0’

(g is “at least as defined” as f)

o Equivalent to requiring
graph(f) € graph(g)
where
graph(h) := {(0,0") | 0 € £,0" = h(o) defined} C ¥ x ¥

for every h: ¥ -» ¥

Rm Semantics and Verification of Software Summer semester 2007

Making it Precise 11

Example 5.1

Let x € Var be fixed, and let fo, f1, f2, f3: £ -» X be given by

fo(o) := undefined

o if o(x) even
fi(o) = undefined otherwise
fa(0) = undefined otherwise

fa(o) =0

Semantics and Verification of Software Summer semester 2007

Making it Precise 11

Example 5.1

Let € Var be fixed, and let fo, f1, f2, f3: £ -» X be given by

fo(o) := undefined
if o(x) even

fi(o) = undeﬁned otherwise

. if o(z) odd
fa(0) = undeﬁned otherwise
fi(o) =0

This implies fo T f1 C f3, fo E f2 £ f3, f1 £ f2, and fo IZ f1

Semantics and Verification of Software Summer semester 2007

Characterization of fix(¢) IT

Now fix(®) can be characterized by:
o fix(®P) is a fixpoint of ®, i.e.,

O (fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every fo: ¥ -» ¥ such
that (D(fo) = fo,

fix(®) T fo

Rm Semantics and Verification of Software Summer semester 2007

Characterization of fix(¢) IT

Now fix(®) can be characterized by:
o fix(®P) is a fixpoint of ®, i.e.,

O (fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every fo: ¥ -» ¥ such

that (D(fo) = fo,
fix(®) C fo

Example 5.2

For while true do skip we obtain for every f: ¥ -+ X:

®(f) = cond(B[true], f o €[skip],idy) = f

Semantics and Verification of Software Summer semester 2007

Characterization of fix(¢) IT

o fix(®) is a fixpoint of , i.e.,
O (fix(®)) = fix(®)

o fix(®) is minimal with respect to C, i.e., for every fo: ¥ -» ¥ such

that (D(fo) = fo,
fix(®) C fo

Example 5.2

For while true do skip we obtain for every f: ¥ -+ X:
®(f) = cond(B[true], f o €[skip],idy) = f

= fix(®) = fy where fy(o) := undefined for every o €
(that is, graph(fg) = 0)

Semantics and Verification of Software Summer semester 2007

Characterization of fix(®) ITI

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idx)

@ Show how it can be “computed” (more exactly: approximated)

Rm Semantics and Verification of Software Summer semester 2007

Characterization of fix(®) ITI

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idx)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain ¥ -+ ¥: chain—complete partial order

on function ®: continuity

Rm Semantics and Verification of Software Summer semester 2007

© Chain Complete Partial Orders

Rm Semantics and Verification of Software Summer semester 2007

Partial Orders

Definition 5.3 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every dy,dp,ds € D,

reflexivity: di C dj
transitivity: di C dp and dp E d3 = di C d3
antisymmetry: d; Edp and dp C d; = di = dp
It is called total if, in addition, always dy C dy or dp C dj.

Semantics and Verification of Software Summer semester 2007

Partial Orders

Definition 5.3 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every dy,dp,ds € D,

reflexivity: di C dj
transitivity: di C dp and dp E d3 = di C d3
antisymmetry: d; Edp and dp C d; = di = dp
It is called total if, in addition, always dy C dy or dp C dj.

Example 5.4
Q (N, <) is a total partial order

m' Semantics and Verification of Software Summer semester 2007

Partial Orders

Definition 5.3 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every dy,dp,ds € D,

reflexivity: di C dj
transitivity: di C dp and dp E d3 = di C d3
antisymmetry: d; Edp and dp C d; = di = dp
It is called total if, in addition, always dy C dy or dp C dj.

Example 5.4
Q (N, <) is a total partial order
@ (2M,C) is a (non-total) partial order

m' Semantics and Verification of Software Summer semester 2007

Partial Orders

Definition 5.3 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every dy,dp,ds € D,

reflexivity: di C dj
transitivity: di C dp and dp E d3 = di C d3
antisymmetry: d; Edp and dp C d; = di = dp
It is called total if, in addition, always dy C dy or dp C dj.

Example 5.4

Q (N, <) is a total partial order
@ (2M,C) is a (non-total) partial order
@ (N, <) is not a partial order

m' Semantics and Verification of Software Summer semester 2007

Partial Orders

Definition 5.3 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every dy,dp,ds € D,

reflexivity: di C dj
transitivity: di C dp and dp E d3 = di C d3
antisymmetry: d; Edp and dp C d; = di = dp
It is called total if, in addition, always dy C dy or dp C dj.

Q (N, <) is a total partial order
@ (2M,C) is a (non-total) partial order

@ (N, <) is not a partial order (since not reflexive)

m' Semantics and Verification of Software Summer semester 2007

Application to fix($) I

(X -» X,C) is a partial order.

Rm Semantics and Verification of Software Summer semester 2007

Application to fix($) I

(X -» X,C) is a partial order.

see exercise O

Rm Semantics and Verification of Software Summer semester 2007

Chains and Least Upper Bounds

Definition 5.6 (Chain, (least) upper bound)
Let (D, C) be a partial order and S C D.

@ S is called a chain in D if, for every s1,s2 € S,
s1LosporsyLosy
(that is, S is a totally ordered subset of D).

m Semantics and Verification of Software Summer semester 2007

Chains and Least Upper Bounds

Definition 5.6 (Chain, (least) upper bound)

Let (D, C) be a partial order and S C D.

@ S is called a chain in D if, for every s1,s2 € S,
st EsporspLosy
(that is, S is a totally ordered subset of D).
© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).

m Semantics and Verification of Software Summer semester 2007

Chains and Least Upper Bounds

Definition 5.6 (Chain, (least) upper bound)

Let (D, C) be a partial order and S C D.

@ S is called a chain in D if, for every s1,s2 € S,
s1E spor 53 C 81
(that is, S is a totally ordered subset of D).
© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d £ d’ for every upper bound d’ of S
(notation: d = |9).

m Semantics and Verification of Software Summer semester 2007

Chains and Least Upper Bounds

Definition 5.6 (Chain, (least) upper bound)

Let (D, C) be a partial order and S C D.

© S is called a chain in D if, for every s1,s2 € S,
st EsporspLosy
(that is, S is a totally ordered subset of D).
© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d £ d’ for every upper bound d’ of S
(notation: d = |9).

v

Example 5.7

@ Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.

m' Semantics and Verification of Software Summer semester 2007

Chains and Least Upper Bounds

Definition 5.6 (Chain, (least) upper bound)

Let (D, C) be a partial order and S C D.

© S is called a chain in D if, for every s1,s2 € S,
st EsporspLosy
(that is, S is a totally ordered subset of D).
© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d £ d’ for every upper bound d’ of S
(notation: d = |9).

@ Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.
Q {0,{0},{0,1},...} is a chain in (2V, C) with LUB N.

m' Semantics and Verification of Software Summer semester 2007

Chain Completeness

Definition 5.8 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Rm Semantics and Verification of Software Summer semester 2007

Chain Completeness

Definition 5.8 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example 5.9
Q@ (2M,C) is a CCPO with | |S = [Jy eq M for every chain S C 2V.

m' Semantics and Verification of Software Summer semester 2007

Chain Completeness

Definition 5.8 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example 5.9
Q@ (2M,C) is a CCPO with | |S = [Jy eq M for every chain S C 2V.
Q (N, <) is not chain complete

m' Semantics and Verification of Software Summer semester 2007

Chain Completeness

Definition 5.8 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Q@ (2N, Q) is a CCPO with | |S = M for every chain S C 2,
MeS

Q (N, <) is not chain complete
(since, e.g., the chain N has no upper bound).

m' Semantics and Verification of Software Summer semester 2007

Least Elements in CCPOs

Every CCPO has a least element | | 0.

Rm Semantics and Verification of Software Summer semester 2007

Least Elements in CCPOs

Every CCPO has a least element | | 0.

Let (D,C) be a CCPO.
@ By definition,) is a chain in D.

m Semantics and Verification of Software Summer semester 2007

Least Elements in CCPOs

Every CCPO has a least element | | 0.

Let (D,C) be a CCPO.
@ By definition,) is a chain in D.

o By definition, every d € D is an upper bound of ().

m Semantics and Verification of Software Summer semester 2007

Least Elements in CCPOs

Every CCPO has a least element | | 0.

Let (D,C) be a CCPO.
@ By definition,) is a chain in D.

o By definition, every d € D is an upper bound of ().
o Thus | |0 exists and is the least element of D.

m Semantics and Verification of Software Summer semester 2007

Application to fix(®) II

Lemma 5.11

o (X -»X,C) is a CCPO with least element fy where graph(fy) = 0.

o In particular, for every chain S C ¥ -» ¥,

graph (I_I S) = U graph(f).

fes

Semantics and Verification of Software Summer semester 2007

Application to fix(®) II

Lemma 5.11

o (X -»X,C) is a CCPO with least element fy where graph(fy) = 0.

o In particular, for every chain S C ¥ -» ¥,

graph (I_I S) = U graph(f).

fes

on the board O

Semantics and Verification of Software Summer semester 2007

	Repetition: Denotational Semantics
	Characterization of fix()
	Chain--Complete Partial Orders

