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Semantics of Statements II

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ( Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ( Σ) → (Σ( Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
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Why Fixpoints?

Goal: preserve validity of equivalence
CJwhile b do cK = CJif b then (c;while b do c) else skipK

Using the known parts of Def. 4.8, we obtain:

CJwhile b do cK

= CJif b then (c;while b do c) else skipK

= cond(BJbK,CJc;while b do cK,CJskipK)

= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation

Or: f must be a fixpoint of the mapping
Φ : (Σ( Σ) → (Σ( Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

(since the equation can be stated as f = Φ(f))
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Well–Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well–defined semantics

Existence: there does no need to exist any fixpoint. Examples:

1 φ1 : N→ N : n 7→ n + 1 has no fixpoint

2 Φ1 : (Σ( Σ) → (Σ( Σ) : f 7→

{

g1 if f = g2

g2 otherwise
(where g1 6= g2) has no fixpoint

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:

1 φ2 : N→ N : n 7→ n3 has fixpoints {0, 1}
2 every state transformation f is a fixpoint of

Φ2 : (Σ( Σ) → (Σ( Σ) : f 7→ f

Solution: guaranteed by choosing a special fixpoint
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Characterization of fix(Φ) I

Let b ∈ BExp and c ∈ Cmd

Let Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)

Let f0 : Σ( Σ be a fixpoint of Φ, i.e., Φ(f0) = f0

Given some initial state σ0 ∈ Σ, we will distinguish the following
cases:

1 loop while b do c terminates after n iterations (n ∈ N)
2 body c diverges in the nth iteration (since it contains a

non–terminating while statement)
3 loop while b do c itself diverges
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Case 1: Termination of Loop

Loop while b do c terminates after n iterations (n ∈ N)

Formally: there exist σ1, . . . , σn ∈ Σ such that

BJbKσi =

{

true if 0 ≤ i < n

false if i = n
and

CJcKσi = σi+1 for every 0 ≤ i < n

Now the definition
Φ(f) := cond(BJbK, f ◦ CJcK, idΣ) implies, for every 0 ≤ i < n,

Φ(f0)(σi) = (f0 ◦ CJcK)(σi) since BJbKσi = true
= f0(σi+1) and

Φ(f0)(σn) = σn since BJbKσn = false

Since Φ(f0) = f0 it follows that

f0(σi) =

{

f0(σi+1) if 0 ≤ i < n

σn if i = n

and hence
f0(σ0) = f0(σ1) = . . . f0(σn) = σn

=⇒ All fixpoints coincide on σ0!
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Case 2: Divergence of Body

Body c diverges in the nth iteration (since it contains a
non–terminating while statement)

Formally: there exist σ1, . . . , σn−1 ∈ Σ such that

BJbKσi = true for every 0 ≤ i < n and

CJcKσi =

{

σi+1 if 0 ≤ i ≤ n − 2
undefined if i = n − 1

Just as in the previous case (setting σn := undefined) it follows
that

f0(σ0) = undefined

=⇒ Again all fixpoints coincide on σ0!
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Case 3: Divergence of Loop

Loop while b do c diverges

Formally: there exist σ1, σ2, . . . ∈ Σ such that

BJbKσi = true and
CJcKσi = σi+1 for every i ∈ N

Here only derivable:

f0(σ0) = f0(σi) for every i ∈ N
=⇒ Value of f0(σ0) not determined!
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Summary

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1 Loop while b do c terminates after n iterations (n ∈ N)

=⇒ f0(σ0) = σn

2 Body c diverges in the nth iteration
=⇒ f0(σ0) = undefined

3 Loop while b do c diverges
=⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)

Not surprising since, e.g., while true do skip yields for every
f : Σ( Σ

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

On the other hand, our operational understanding requires, for
every σ0 ∈ Σ,

CJwhile true do skipKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.
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Making it Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

Given f, g : Σ( Σ, let

f ⊑ g ⇐⇒ for every σ, σ′ ∈ Σ : f(σ) = σ′ =⇒ g(σ) = σ′

(g is “at least as defined” as f)

Equivalent to requiring

graph(f) ⊆ graph(g)

where

graph(h) := {(σ, σ′) | σ ∈ Σ, σ′ = h(σ) defined} ⊆ Σ × Σ

for every h : Σ( Σ
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Making it Precise II

Example 5.1

Let x ∈ Var be fixed, and let f0, f1, f2, f3 : Σ( Σ be given by

f0(σ) := undefined

f1(σ) :=

{

σ if σ(x) even
undefined otherwise

f2(σ) :=

{

σ if σ(x) odd
undefined otherwise

f3(σ) := σ

This implies f0 ⊑ f1 ⊑ f3, f0 ⊑ f2 ⊑ f3, f1 6⊑ f2, and f2 6⊑ f1
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Characterization of fix(Φ) II

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to ⊑, i.e., for every f0 : Σ( Σ such
that Φ(f0) = f0,

fix(Φ) ⊑ f0

Example 5.2

For while true do skip we obtain for every f : Σ( Σ:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

=⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)
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Characterization of fix(Φ) III

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ( Σ: chain–complete partial order

on function Φ: continuity
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Partial Orders

Definition 5.3 (Partial order)

A partial order (PO) (D,⊑) consists of a set D, called domain, and of
a relation ⊑ ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 ⊑ d1

transitivity: d1 ⊑ d2 and d2 ⊑ d3 =⇒ d1 ⊑ d3

antisymmetry: d1 ⊑ d2 and d2 ⊑ d1 =⇒ d1 = d2

It is called total if, in addition, always d1 ⊑ d2 or d2 ⊑ d1.

Example 5.4

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non–total) partial order

3 (N, <) is not a partial order (since not reflexive)
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reflexivity: d1 ⊑ d1

transitivity: d1 ⊑ d2 and d2 ⊑ d3 =⇒ d1 ⊑ d3

antisymmetry: d1 ⊑ d2 and d2 ⊑ d1 =⇒ d1 = d2

It is called total if, in addition, always d1 ⊑ d2 or d2 ⊑ d1.

Example 5.4

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non–total) partial order

3 (N, <) is not a partial order (since not reflexive)
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Application to fix(Φ) I

Lemma 5.5

(Σ( Σ,⊑) is a partial order.

Proof.

see exercise
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Chains and Least Upper Bounds

Definition 5.6 (Chain, (least) upper bound)

Let (D,⊑) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 ⊑ s2 or s2 ⊑ s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s ⊑ d for every

s ∈ S (notation: S ⊑ d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d ⊑ d′ for every upper bound d′ of S

(notation: d =
⊔

S).

Example 5.7

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2 {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.
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Chain Completeness

Definition 5.8 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example 5.9

1 (2N,⊆) is a CCPO with
⊔

S =
⋃

M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).
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Least Elements in CCPOs

Corollary 5.10

Every CCPO has a least element
⊔

∅.

Proof.

Let (D,⊑) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.

Thus
⊔

∅ exists and is the least element of D.
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Application to fix(Φ) II

Lemma 5.11

(Σ( Σ,⊑) is a CCPO with least element f∅ where graph(f∅) = ∅.

In particular, for every chain S ⊆ Σ( Σ,

graph
(

⊔

S
)

=
⋃

f∈S

graph(f).

Proof.

on the board
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