Semantics and Verification of Software

Lecture 5: Basic Fixpoint Theory

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Denotational Semantics

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Statements 11

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,
Cl.]: Cmd — (X -- X),
is given by:
¢[skip] := idx
Clz :=a]o := o[z — Aa]o]
Q:[[C]_;CQ]] = Q:[[Cz]] o Q:[[Cl]]

C[if b then c¢; else 2] := cond(B[b], €[c1], €[c2])
¢[while b do c] := fix(P)

where @ : (X > X) — (X -» X) : f > cond(B[b], f o €[c],idx)

m' Semantics and Verification of Software Summer semester 2007

Why Fixpoints?

@ Goal: preserve validity of equivalence
C[while b do ¢] = €[if b then (c;while b do ¢) else skip]

Using the known parts of Def. 4.8, we obtain:

C[while b do]
= (C[if b then (c;while b do c) else skip]
= cond(B[b], €[c;while b do], €[skip])
= cond(B[b], €[while b do] o €[], idy)

©

Abbreviating f := €[while b do ¢] this yields:
f=cond(B[b], f o €[c],idyx)
Hence f must be a solution of this recursive equation

Or: f must be a fixpoint of the mapping
d: (X -X)—= (X -->X): fr cond(B[b], f o €[c],idy)
(since the equation can be stated as f = ®(f))

m' Semantics and Verification of Software Summer semester 2007

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics
Existence: there does no need to exist any fixpoint. Examples:

O ¢1:N— N:n+— n+1 has no fixpoint

(s B . g1 if f=g
@ ¢:(X-1)—(x %Z)'f'_){gz otherwise

(where g1 # ¢2) has no fixpoint
Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:
Q ¢ : N — N:n+ n has fixpoints {0,1}
@ every state transformation f is a fixpoint of
O (X)) (X)) f—f
Solution: guaranteed by choosing a special fixpoint

Rm Semantics and Verification of Software Summer semester 2007

© Characterization of fix(®)

Rm Semantics and V tion of Software Summer semester 2007

Characterization of fix(®) I

o Let b € BExp and ¢ € Cmd

o Let ®(f) := cond(B[b], f o €[c],idyx)

o Let fo: X -» X be a fixpoint of ®, i.e., ®(fo) = fo

o Given some initial state og € X, we will distinguish the following
cases:

@ loop while b do ¢ terminates after n iterations (n € N)

© body c diverges in the nth iteration (since it contains a
non-terminating while statement)

© loop while b do c itself diverges

Rm Semantics and Verification of Software Summer semester 2007

Case 1: Termination of Loop

o Loop while b do ¢ terminates after n iterations (n € N)

@ Formally: there exist o1,...,0, € X such that
true f0<i<n
B[b]oi = {false ifi=n and
Clcoi = oita forevery 0<i<n

@ Now the definition
®(f) := cond(B[b], f o €[c],idy) implies, for every 0 < i < n,
®(fo)(0:) = (fo o €[c])(o;) since B[b]o; = true
= fO(Uz'—f—l) and

d(fo)(on) = on since B[b]o,, = false

@ Since ®(fo) = fo it follows that
N f0(0i+1) ifo<i<n
foloi) = {crn ifi=n

and hence

fo(oo) = folo1) = ... fo(on) = on

= All fixpoints coincide on og!

Rm Semantics and Verification of Software Summer semester 2007

Case 2: Divergence of Body

@ Body ¢ diverges in the nth iteration (since it contains a
non—terminating while statement)

o Formally: there exist o1,...,0,-1 € X such that

B[b]o; = true for every 0 <i < n and

(o if0<i<n-—2
Cefo: = {undeﬁned ifi=n-—1

@ Just as in the previous case (setting o, := undefined) it follows
that
fo(oo) = undefined

= Again all fixpoints coincide on og!

Rm Semantics and Verification of Software Summer semester 2007

Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist o1,05,... € X such that

B[b]o; = true and
Clc]o; = oi41 for every i € N

@ Here only derivable:

foloo) = fo(o;) for every i € N

= Value of fy(0p) not determined!

Rm Semantics and Verification of Software Summer semester 2007

For ®(fp) = fo and initial state o9 € X, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fo(o0) = oy
© Body c diverges in the nth iteration
— fo(op) = undefined
© Loop while b do c diverges
— mno condition on fy (only fo(co) = fo(o;) for every i € N)

o Not surprising since, e.g., while true do skip yields for every
fir—-%
®(f) = cond(B[true], f o €[skip],idy) = f
@ On the other hand, our operational understanding requires, for
every og € X,
¢[while true do skip]op = undefined

fix(®) is the least defined fixpoint of ®.

m' Semantics and Verification of Software Summer semester 2007

Making it Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g: X -» X, let
fCg < foreveryo,0/ €X: f(o)=0" = g(o) =0’

(g is “at least as defined” as f)

o Equivalent to requiring
graph(f) € graph(g)
where
graph(h) := {(0,0") | 0 € £,0" = h(o) defined} C ¥ x ¥

for every h: ¥ -» ¥

Rm Semantics and Verification of Software Summer semester 2007

Making it Precise 11

Example 5.1

Let € Var be fixed, and let fo, f1, f2, f3: £ -» X be given by

fo(o) := undefined
if o(x) even

fi(o) = undeﬁned otherwise

. if o(z) odd
fa(0) = undeﬁned otherwise
fi(o) =0

This implies fo T f1 C f3, fo E f2 £ f3, f1 £ f2, and fo IZ f1

Semantics and Verification of Software Summer semester 2007

Characterization of fix(¢) IT

Now fix(®) can be characterized by:
o fix(®P) is a fixpoint of ®, i.e.,

O (fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every fo: ¥ -» ¥ such

that (D(fo) = fo,
fix(®) C fo

Example 5.2

For while true do skip we obtain for every f: ¥ -+ X:
®(f) = cond(B[true], f o €[skip],idy) = f

= fix(®) = fy where fy(o) := undefined for every o €
(that is, graph(fg) = 0)

Semantics and Verification of Software Summer semester 2007

Characterization of fix(®) ITI

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idx)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain ¥ -+ ¥: chain—complete partial order

on function ®: continuity

Rm Semantics and Verification of Software Summer semester 2007

© Chain Complete Partial Orders

Rm Semantics and Verification of Software Summer semester 2007

Partial Orders

Definition 5.3 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every dy,dp,ds € D,

reflexivity: di C dj
transitivity: di C dp and dp E d3 = di C d3
antisymmetry: d; Edp and dp C d; = di = dp
It is called total if, in addition, always dy C dy or dp C dj.

Q (N, <) is a total partial order
@ (2M,C) is a (non-total) partial order

@ (N, <) is not a partial order (since not reflexive)

m' Semantics and Verification of Software Summer semester 2007

Application to fix($) I

(X -» X,C) is a partial order.

see exercise O

Rm Semantics and Verification of Software Summer semester 2007

Chains and Least Upper Bounds

Definition 5.6 (Chain, (least) upper bound)

Let (D, C) be a partial order and S C D.

© S is called a chain in D if, for every s1,s2 € S,
st EsporspLosy
(that is, S is a totally ordered subset of D).
© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d £ d’ for every upper bound d’ of S
(notation: d = |9).

@ Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.
Q {0,{0},{0,1},...} is a chain in (2V, C) with LUB N.

m' Semantics and Verification of Software Summer semester 2007

Chain Completeness

Definition 5.8 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Q@ (2N, Q) is a CCPO with | |S = M for every chain S C 2,
MeS

Q (N, <) is not chain complete
(since, e.g., the chain N has no upper bound).

m' Semantics and Verification of Software Summer semester 2007

Least Elements in CCPOs

Every CCPO has a least element | | 0.

Let (D,C) be a CCPO.
@ By definition,) is a chain in D.

o By definition, every d € D is an upper bound of ().
o Thus | |0 exists and is the least element of D.

m Semantics and Verification of Software Summer semester 2007

Application to fix(®) II

Lemma 5.11

o (X -»X,C) is a CCPO with least element fy where graph(fy) = 0.

o In particular, for every chain S C ¥ -» ¥,

graph (I_I S) = U graph(f).

fes

on the board O

Semantics and Verification of Software Summer semester 2007

	Repetition: Denotational Semantics
	Characterization of fix()
	Chain--Complete Partial Orders

