

Semantics and Verification of Software

Lecture 6: Basic Fixpoint Theory

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw/>

Summer semester 2007

1 Repetition: Denotational Semantics

2 Continuous Functions

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

$$\mathfrak{C}[\cdot] : Cmd \rightarrow (\Sigma \rightarrow \Sigma),$$

is given by:

$$\begin{aligned}\mathfrak{C}[\text{skip}] &:= \text{id}_\Sigma \\ \mathfrak{C}[x := a]\sigma &:= \sigma[x \mapsto \mathfrak{A}[a]\sigma] \\ \mathfrak{C}[c_1; c_2] &:= \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1] \\ \mathfrak{C}[\text{if } b \text{ then } c_1 \text{ else } c_2] &:= \text{cond}(\mathfrak{B}[b], \mathfrak{C}[c_1], \mathfrak{C}[c_2]) \\ \mathfrak{C}[\text{while } b \text{ do } c] &:= \text{fix}(\Phi)\end{aligned}$$

where $\Phi : (\Sigma \rightarrow \Sigma) \rightarrow (\Sigma \rightarrow \Sigma) : f \mapsto \text{cond}(\mathfrak{B}[b], f \circ \mathfrak{C}[c], \text{id}_\Sigma)$

Why Fixpoints?

- Goal: preserve **validity of equivalence**

$$\mathfrak{C}[\text{while } b \text{ do } c] = \mathfrak{C}[\text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}]$$

- Using the known parts of Def. 4.8, we obtain:

$$\begin{aligned}\mathfrak{C}[\text{while } b \text{ do } c] &= \mathfrak{C}[\text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}] \\ &= \text{cond}(\mathfrak{B}[b], \mathfrak{C}[c; \text{while } b \text{ do } c], \mathfrak{C}[\text{skip}]) \\ &= \text{cond}(\mathfrak{B}[b], \mathfrak{C}[\text{while } b \text{ do } c] \circ \mathfrak{C}[c], \text{id}_\Sigma)\end{aligned}$$

- Abbreviating $f := \mathfrak{C}[\text{while } b \text{ do } c]$ this yields:

$$f = \text{cond}(\mathfrak{B}[b], f \circ \mathfrak{C}[c], \text{id}_\Sigma)$$

- Hence f must be a **solution** of this recursive equation

- Or: f must be a **fixpoint** of the mapping

$$\Phi : (\Sigma \rightarrow \Sigma) \rightarrow (\Sigma \rightarrow \Sigma) : f \mapsto \text{cond}(\mathfrak{B}[b], f \circ \mathfrak{C}[c], \text{id}_\Sigma)$$

(since the equation can be stated as $f = \Phi(f)$)

For $\Phi(f_0) = f_0$ and initial state $\sigma_0 \in \Sigma$, case distinction yields:

- ① Loop `while b do c` terminates after n iterations ($n \in \mathbb{N}$)
 $\implies f_0(\sigma_0) = \sigma_n$
- ② Body `c` diverges in the n th iteration
 $\implies f_0(\sigma_0) = \text{undefined}$
- ③ Loop `while b do c` diverges
 \implies no condition on f_0 (only $f_0(\sigma_0) = f_0(\sigma_i)$ for every $i \in \mathbb{N}$)

Conclusion

$\text{fix}(\Phi)$ is the least defined fixpoint of Φ .

To use fixpoint theory, the notion of “least defined” has to be made precise.

- Given $f, g : \Sigma \rightarrow \Sigma$, let

$$f \sqsubseteq g \iff \text{for every } \sigma, \sigma' \in \Sigma : f(\sigma) = \sigma' \implies g(\sigma) = \sigma'$$

(g is “at least as defined” as f)

- Equivalent to requiring

$$\text{graph}(f) \subseteq \text{graph}(g)$$

where

$$\text{graph}(h) := \{(\sigma, \sigma') \mid \sigma \in \Sigma, \sigma' = h(\sigma) \text{ defined}\} \subseteq \Sigma \times \Sigma$$

for every $h : \Sigma \rightarrow \Sigma$

Goals:

- Prove **existence** of $\text{fix}(\Phi)$ for $\Phi(f) = \text{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \text{id}_\Sigma)$
- Show how it can be "**computed**" (more exactly: approximated)

Sufficient conditions:

on domain $\Sigma \rightarrow \Sigma$: **chain-complete partial order**

on function Φ : **continuity**

1 Repetition: Denotational Semantics

2 Continuous Functions

Monotonicity I

Definition 6.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \rightarrow D'$. F is called **monotonic** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies F(d_1) \sqsubseteq' F(d_2).$$

Interpretation: monotonic functions “preserve information”

Example 6.2

- ① Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $F_1 : T \rightarrow \mathbb{N} : S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .
- ② $F_2 : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}} : S \mapsto \mathbb{N} \setminus S$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $F_2(\emptyset) = \mathbb{N} \not\subseteq F_2(\mathbb{N}) = \emptyset$).

Lemma 6.3

Let $b \in BExp$, $c \in Cmd$, and $\Phi : (\Sigma \rightarrow \Sigma) \rightarrow (\Sigma \rightarrow \Sigma)$ with $\Phi(f) := \text{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \text{id}_\Sigma)$. Then Φ is monotonic w.r.t. $(\Sigma \rightarrow \Sigma, \sqsubseteq)$.

Proof.

on the board

The following lemma states how chains behave under monotonic functions.

Lemma 6.4

Let (D, \sqsubseteq) and (D', \sqsubseteq') be CCPo's, $F : D \rightarrow D'$ monotonic, and $S \subseteq D$ a chain in D . Then:

- ① $F(S) := \{F(d) \mid d \in S\}$ is a chain in D' .
- ② $\bigsqcup F(S) \sqsubseteq' F(\bigsqcup S)$.

Proof.

on the board

Continuity

A function F is continuous if applying F and taking LUBs can be exchanged

Definition 6.5 (Continuity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be CCPOs and $F : D \rightarrow D'$ monotonic. Then F is called **continuous** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every non-empty chain $S \subseteq D$,

$$F\left(\bigsqcup S\right) = \bigsqcup F(S).$$

Lemma 6.6

Let $b \in BExp$, $c \in Cmd$, and $\Phi(f) := \text{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \text{id}_\Sigma)$. Then Φ is continuous w.r.t. $(\Sigma \rightarrow \Sigma, \sqsubseteq)$.

Proof.

on the board

