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Semantics of Statements II

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ( Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ( Σ) → (Σ( Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
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Why Fixpoints?

Goal: preserve validity of equivalence
CJwhile b do cK = CJif b then (c;while b do c) else skipK

Using the known parts of Def. 4.8, we obtain:

CJwhile b do cK

= CJif b then (c;while b do c) else skipK

= cond(BJbK,CJc;while b do cK,CJskipK)

= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation

Or: f must be a fixpoint of the mapping
Φ : (Σ( Σ) → (Σ( Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

(since the equation can be stated as f = Φ(f))
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Characterization of fix(Φ) I

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:

1 Loop while b do c terminates after n iterations (n ∈ N)
=⇒ f0(σ0) = σn

2 Body c diverges in the nth iteration
=⇒ f0(σ0) = undefined

3 Loop while b do c diverges
=⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)

Conclusion

fix(Φ) is the least defined fixpoint of Φ.
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Characterization of fix(Φ) II

To use fixpoint theory, the notion of “least defined” has to be made
precise.

Given f, g : Σ( Σ, let

f ⊑ g ⇐⇒ for every σ, σ′ ∈ Σ : f(σ) = σ′ =⇒ g(σ) = σ′

(g is “at least as defined” as f)

Equivalent to requiring

graph(f) ⊆ graph(g)

where

graph(h) := {(σ, σ′) | σ ∈ Σ, σ′ = h(σ) defined} ⊆ Σ × Σ

for every h : Σ( Σ
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Characterization of fix(Φ) III

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ( Σ: chain–complete partial order

on function Φ: continuity
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Monotonicity I

Definition 6.1 (Monotonicity)

Let (D,⊑) and (D′,⊑′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,⊑) and (D′,⊑′)) if, for every d1, d2 ∈ D,

d1 ⊑ d2 =⇒ F (d1) ⊑
′ F (d2).

Interpretation: monotonic functions “preserve information”

Example 6.2

1 Let T := {S ⊆ N | S finite}. Then F1 : T → N : S 7→
∑

n∈S
n is

monotonic w.r.t. (2N,⊆) and (N,≤).

2 F2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but F2(∅) = N 6⊆ F2(N) = ∅).
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Application to fix(Φ) I

Lemma 6.3

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ( Σ) → (Σ( Σ) with

Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t.

(Σ( Σ,⊑).

Proof.

on the board
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Monotonicity II

The following lemma states how chains behave under montonic
functions.

Lemma 6.4

Let (D,⊑) and (D′,⊑′) be CCPOs, F : D → D′ monotonic, and S ⊆ D

a chain in D. Then:

1 F (S) := {F (d) | d ∈ S} is a chain in D′.

2

⊔

F (S) ⊑′ F (
⊔

S).

Proof.

on the board
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Continuity

A function F is continuous if applying F and taking LUBs can be
exchanged

Definition 6.5 (Continuity)

Let (D,⊑) and (D′,⊑′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,⊑) and (D′,⊑′)) if, for every
non–empty chain S ⊆ D,

F
(

⊔

S
)

=
⊔

F (S).

Lemma 6.6

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ( Σ,⊑).

Proof.

on the board
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