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Characterization of fix(Φ)

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ( Σ: chain–complete partial order

on function Φ: continuity
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Chain–Complete Partial Orders

Definition (Chain, (least) upper bound)

Let (D,⊑) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 ⊑ s2 or s2 ⊑ s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s ⊑ d for every

s ∈ S (notation: S ⊑ d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d ⊑ d′ for every upper bound d′ of S
(notation: d =

⊔

S).

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.
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Continuous Functions

Definition (Monotonicity)

Let (D,⊑) and (D′,⊑′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,⊑) and (D′,⊑′)) if, for every d1, d2 ∈ D,

d1 ⊑ d2 =⇒ F (d1) ⊑
′ F (d2).

Definition (Continuity)

Let (D,⊑) and (D′,⊑′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,⊑) and (D′,⊑′)) if, for every
non–empty chain S ⊆ D,

F
(

⊔

S
)

=
⊔

F (S).
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The Fixpoint Theorem

Theorem 7.1 (Fixpoint Theorem by Tarski and Knaster)

Let (D,⊑) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{

Fn

(

⊔

∅
)

| n ∈ N}

is the least fixpoint of F where

F 0(d) := d and Fn+1(d) := F (Fn(d)).

Proof.

on the board
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Application to fix(Φ) II

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary 7.2

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃

n∈N graph(Φn(f∅))

Proof.

Using

Lemma 5.12
((Σ( Σ,⊑) CCPO with least element f∅; LUB = union of graphs)

Lemma 6.7 (Φ continuous)

Theorem 7.1 (Fixpoint Theorem)
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Denotational Semantics of Factorial Program I

Example 7.3 (Factorial program)

Let c ∈ Cmd be given by
y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)

For every initial state σ0 ∈ Σ, Def. 4.8 yields:
CJcK(σ0) = fix(Φ)(σ1)

where σ1 := σ0[y 7→ 1] and, for every f : Σ( Σ and σ ∈ Σ,
Φ(f)(σ) = cond(BJ¬(x=1)K, f ◦ CJy:=y*x; x:=x-1K, idΣ)(σ)

=

{

σ if σ(x) = 1
f(σ′) otherwise

with σ′ := σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x) − 1].

Approximations of least fixpoint of Φ according to Theorem 7.1:
fix(Φ) =

⊔

{Φn(f∅) | n ∈ N}
(where graph(f∅) = ∅)
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Denotational Semantics of Factorial Program II

Example 7.3 (Factorial program; continued)

f0(σ) := Φ0(f∅)(σ)
= f∅(σ)
= undefined

f1(σ) := Φ1(f∅)(σ)
= Φ(f0)(σ)

=

{

σ if σ(x) = 1
f0(σ

′) otherwise

=

{

σ if σ(x) = 1
undefined otherwise

f2(σ) := Φ2(f∅)(σ)
= Φ(f1)(σ)

=

{

σ if σ(x) = 1
f1(σ

′) otherwise

=







σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
undefined if σ(x) 6= 1 and σ′(x) 6= 1

=







σ if σ(x) = 1
σ′ if σ(x) = 2
undefined if σ(x) 6= 1 and σ(x) 6= 2

=



















σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y),
x 7→ 1]

if σ(x) = 2

undefined if σ(x) 6= 1
and σ(x) 6= 2
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Denotational Semantics of Factorial Program III

Example 7.3 (Factorial program; continued)

f3(σ) := Φ3(f∅)(σ)
= Φ(f2)(σ)

=

{

σ if σ(x) = 1
f2(σ

′) otherwise

=











σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) 6= 1 and σ′(x) = 2
undefined if σ(x) 6= 1 and σ′(x) 6= 1 and σ′(x) 6= 2

=











σ if σ(x) = 1
σ′ if σ(x) = 2
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}

=











σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y), x 7→ 1] if σ(x) = 2
σ[y 7→ 3 ∗ 2 ∗ σ(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}
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Denotational Semantics of Factorial Program IV

Example 7.3 (Factorial program; continued)

n–th approximation:

fn(σ)
:= Φn(f∅)(σ)

=







σ[y 7→ σ(x) ∗ (σ(x) − 1) ∗ . . . ∗ 2 ∗ σ(y),
x 7→ 1]

if 1 ≤ σ(x) ≤ n

undefined if σ(x) /∈ {1, . . . , n}

=

{

σ[y 7→ (σ(x))! ∗ σ(y), x 7→ 1] if 1 ≤ σ(x) ≤ n
undefined if σ(x) /∈ {1, . . . , n}

Fixpoint:

CJcK(σ0) = fix(Φ)(σ1) =

{

σ[y 7→ (σ(x))!, x 7→ 1] if σ(x) ≥ 1
undefined otherwise
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Summary: Denotational Semantics

Compositional definition of functional CJ.K operating on partial
state transformations

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)
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Equivalence of Semantics I

Remember: in Def. 4.3, OJ.K : Cmd → (Σ( Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem 7.4 (Coincidence Theorem)

For every c ∈ Cmd,

OJcK = CJcK,

i.e., OJ.K = CJ.K.
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Equivalence of Semantics II

The proof of Theorem 7.4 employs the following auxiliary propositions:

Lemma 7.5
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z.

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 see Exercise 3.2

2 analogously
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Equivalence of Semantics III

Proof (Theorem 7.4).

We have to show that

〈c, σ〉 → σ′ ⇐⇒ CJcK(σ) = σ′

⇒ by structural induction over the derivation tree of
〈c, σ〉 → σ′

⇐ by structural induction over c (with a nested complete
induction over fixpoint index n)

(on the board)
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Reminder: Operational/Denotational Semantics

Definition (Operational semantics of statements)

Execution relation 〈c, σ〉 → σ′:

〈skip, σ〉 → σ
(skip)

〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]
(asgn)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(seq)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(if–t)

〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(if–f)

〈b, σ〉 → false

〈while b do c, σ〉 → σ
(wh–f)

〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′
(wh–t)

Definition (Denotational semantics of statements)

Denotational semantic functional for statements CJ.K : Cmd → (Σ( Σ):
CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K, CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ( Σ) → (Σ( Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
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