Semantics and Verification of Software

Lecture 7: Denotational Semantics

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: Continuous Functions on CCPOs

Rm Semantics and Verification of Software Summer semester 2007

Characterization of fix(®)

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idx)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain ¥ -+ ¥: chain—complete partial order

on function ®: continuity

Rm Semantics and Verification of Software Summer semester 2007

Chain—Complete Partial Orders

Definition (Chain, (least) upper bound)

Let (D, C) be a partial order and S C D.

@ S is called a chain in D if, for every s1,s2 € S,
s1LosporsyLosy
(that is, S is a totally ordered subset of D).
© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d £ d’ for every upper bound d’ of S
(notation: d =] |S).

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

m' Semantics and Verification of Software Summer semester 2007

Continuous Functions

Definition (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let F': D — D’. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,d» € D,

dl C d2 — F(dl) E/ F(dz)

Definition (Continuity)

Let (D,C) and (D',C') be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D', ")) if, for every
non—empty chain S C D,

F (|_| s) = |F(3).

m' Semantics and Verification of Software Summer semester 2007

© The Fixpoint Theorem

Rm Semantics and Verification of Software Summer semester 2007

The Fixpoint Theorem

Theorem 7.1 (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) == |_|{F" (L]0) |n €N}

1s the least fixpoint of F' where

F%(d) := d and F""(d) := F(F"(d)).

on the board O

m' Semantics and Verification of Software Summer semester 2007

Application to fix(®) II

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Let b € BExp, ¢ € Cmd, and ®(f) := cond(B[b], f o €[c],ids). Then

graph(fix(®)) = _J graph(®"(fy))

neN

Proof.
Using

@ Lemma 5.12
((X -» ¥,C) CCPO with least element fp; LUB = union of graphs)

o Lemma 6.7 (¢ continuous)

@ Theorem 7.1 (Fixpoint Theorem)

m' Semantics and Verification of Software Summer semester 2007

© An Example

Rm Semantics and ri ion of Software Summer semester 2007

Denotational Semantics of Factorial Program I

Example 7.3 (Factorial program)

o Let ¢ € U'md be given by
y:=1; while —(x=1) do (y:=y*x; x:=x-1)
@ For every initial state g € X, Def. 4.8 yields:
€[c](o0) = fix(®)(o1)
where 01 := op[y — 1] and, for every f: ¥ -> X and o0 € X,
o(f)(0) = cond(B[~(x=1)], f o €[y:=y*x; x:=x-1],ids)(c)
o ifo(x) =1
f(o’) otherwise
with o/ := o[y — o(y) x o(x),x — o(x) — 1].

o Approximations of least fixpoint of ® according to Theorem 7.1:
fix(®) = L{®"(fo) | n € N}
(where graph(fy) = 0)

m' Semantics and Verification of Software Summer semester 2007

Denotational Semantics of Factorial Program II

Example 7.3 (Factorial program; continued)

fa(0) = ®%(fy)(0)
= O(f1)(o
folo) = @°(fy)(o) _ o ifo(x) =1
= fo(o) fi(o’) otherwise
= undefined o if o(x) =1
=<{d if o(x) # 1 and o/(x) =1
undefined if o(x) # 1 and o/(x) # 1
fi(o) = ®(fo)(0) o ifo(x)=1
= ®(fo)(o) =<0 if o(x) =2
= J@ if o(x) =1 undefined if o(x) # 1 and o(x) # 2
fo(o’) otherwise o if o(x) =1
2 if o(x) = 1 oly—2x0(y), ifo(x)=
undefined otherwise = x — 1]
undefined if o(x) #1
and o(x) # 2

m' Semantics and Verification of Software Summer semester 2007

Denotational Semantics of Factorial Program III

Example 7.3 (Factorial program; continued)

fa(0) = ®*(fy)(0)
= o(f2)(0)

U ifo(x)=1

f (o/) otherwise

o if o(x) =1

o if o(x) # 1 and o'(x) =1
dly—2xd'(y),x—1] ifo(x)#1 and o'(x) =2

undefined if 0(x) # 1 and o/(x) # 1 and o/(x) # 2

o ifo(x)=1

o’ if o(x) =2
o'ly = 2x0'(y),x— 1] ifo(x)=3

undefined if o(x) ¢ {1,2,3}

o ifo(x)=1

oly — 2xo(y),x — 1] if o(x) =2

oly—3%x2x0(y),x— 1] if o(x) =3

undefined if o(x) ¢ {1,2,3}

m' Semantics and Verification of Software Summer semester 2007

Denotational Semantics of Factorial Program IV

Example 7.3 (Factorial program; continued)

@ n—th approximation:
fn(o)

= ¢"(fy)(0)

- U[yr—ulf](x)*(a(x)—1)*...*2*0(y), ifl1<o(x)<n

- undefined if o(x) ¢ {1,...,n}

_ Jolym (ex)x0o(y),x—1] fl<o(x)<n

undefined ifo(x) ¢ {1,...,n}
o Fixpoint:
eel(o0) = ix(@)(on) = { oo (== 2 EPE0 =21

m' Semantics and Verification of Software Summer semester 2007

@ Summary: Denotational Semantics

Rm Semantics and Verification of Software Summer semester 2007

Summary: Denotational Semantics

o Compositional definition of functional €[.] operating on partial
state transformations

o Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Rm Semantics and Verification of Software Summer semester 2007

@ Equivalence of Operational and Denotational Semantics

Rm Semantics and Verification of Software Summer semester 2007

Equivalence of Semantics 1

Remember: in Def. 4.3, O[.] : Cmd — (X -» X) was given by

Olc](c) =0’ < {c,0) — o’

Theorem 7.4 (Coincidence Theorem)

For every c € Cmd,
Olc] = €[],

ie., O[] = €[].

m' Semantics and Verification of Software Summer semester 2007

Equivalence of Semantics 11

The proof of Theorem 7.4 employs the following auxiliary propositions:

Lemma 7.5
Q For everya € AExp, 0 €L, and z € Z:

(a,0) = z <= AUa] (o) = =.

@ For everyb e BEzp, 0 € X, and t € B:

(byo) =t < B[b](c) =t.

@ see Exercise 3.2

© analogously

m' Semantics and Verification of Software Summer semester 2007

Equivalence of Semantics 111

Proof (Theorem 7.4).

We have to show that
(c,0) = 0 = €c =0’

= by structural induction over the derivation tree of
(c,0) — o’

< by structural induction over ¢ (with a nested complete
induction over fixpoint index n)

(on the board) O

m Semantics and Verification of Software Summer semester 2007

Reminder: Operational/Denotational Semantics

Definition (Operational semantics of statements)

Execution relation {(c, o) — o”:

i) (0.0) -

(asgn)

(skip,0) — o (x :=a,0) — o[z — 7]

{c1,0) = o’ (c2,0") — 0" (seq) (b,0) — true {(c1,0) — o’ (if-t)
(cr;¢0,0) — o (if b then c¢; else cp,0) — o’
!
(b,o) — false (c2,0) — 0o _(GE£) (b,0) — false frbh)

(if b then ¢; else ¢p,0) — o (while bdo ¢c,0) — o

(b,0) — true {c,0) — o’ (while b do c,0’) — o”

h—t
(while b do ¢,0) — o” (wh-t)

Definition (Denotational semantics of statements)

Denotational semantic functional for statements €[.] : Cmd — (X -» X):
¢[skip] := idx
€z := a]o := o[z — Aa]o]
Clers 2] == €fez] o €fen]
C[if b then ¢; else ¢;] := cond(B[b], €[c1], €cz])
Cwhile b do] := fix(P)
where ® : (X -» X) — (X -» X) : f — cond(B[b], f o €[], idx)

m Semantics and Verification of Software Summer semester 2007

	Repetition: Continuous Functions on CCPOs
	The Fixpoint Theorem
	An Example
	Summary: Denotational Semantics
	Equivalence of Operational and Denotational Semantics

