

Semantics and Verification of Software

Lecture 8: Axiomatic Semantics of WHILE

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw/>

Summer semester 2007

- 1 Repetition: The Fixpoint Theorem
- 2 Repetition: Equivalence of Operational and Denotational Semantics
- 3 The Axiomatic Approach
- 4 The Assertion Language
- 5 Partial Correctness Properties

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D, \sqsubseteq) be a CCPO and $F : D \rightarrow D$ continuous. Then

$$\text{fix}(F) := \bigsqcup \left\{ F^n \left(\bigsqcup \emptyset \right) \mid n \in \mathbb{N} \right\}$$

is the least fixpoint of F where

$$F^0(d) := d \text{ and } F^{n+1}(d) := F(F^n(d)).$$

Application to $\text{fix}(\Phi)$

Altogether this completes the definition of $\mathfrak{C}[\![\cdot]\!]$. In particular, for the `while` statement we obtain:

Corollary

Let $b \in BExp$, $c \in Cmd$, and $\Phi(f) := \text{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \text{id}_\Sigma)$. Then

$$\text{graph}(\text{fix}(\Phi)) = \bigcup_{n \in \mathbb{N}} \text{graph}(\Phi^n(f_\emptyset))$$

Proof.

Using

- Lemma 5.12
(($\Sigma \rightarrow \Sigma, \sqsubseteq$) CCPO with least element f_\emptyset ; LUB = union of graphs)
- Lemma 6.7 (Φ continuous)
- Theorem 7.1 (Fixpoint Theorem)

- 1 Repetition: The Fixpoint Theorem
- 2 Repetition: Equivalence of Operational and Denotational Semantics
- 3 The Axiomatic Approach
- 4 The Assertion Language
- 5 Partial Correctness Properties

Remember: in Def. 4.3, $\mathfrak{O}[\cdot] : Cmd \rightarrow (\Sigma \rightarrow \Sigma)$ was given by

$$\mathfrak{O}[c](\sigma) = \sigma' \iff \langle c, \sigma \rangle \rightarrow \sigma'$$

Theorem (Coincidence Theorem)

For every $c \in Cmd$,

$$\mathfrak{O}[c] = \mathfrak{C}[c],$$

i.e., $\mathfrak{O}[\cdot] = \mathfrak{C}[\cdot]$.

The proof of Theorem 7.4 employs the following auxiliary propositions:

Lemma

- ① For every $a \in AExp$, $\sigma \in \Sigma$, and $z \in \mathbb{Z}$:

$$\langle a, \sigma \rangle \rightarrow z \iff \mathfrak{A}[\![a]\!](\sigma) = z.$$

- ② For every $b \in BExp$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$:

$$\langle b, \sigma \rangle \rightarrow t \iff \mathfrak{B}[\![b]\!](\sigma) = t.$$

Proof.

- ① see Exercise 3.2
- ② analogously

Proof (Theorem 7.4).

We have to show that

$$\langle c, \sigma \rangle \rightarrow \sigma' \iff \mathfrak{C}[\![c]\!](\sigma) = \sigma'$$

- ⇒ by structural induction over the derivation tree of
 $\langle c, \sigma \rangle \rightarrow \sigma'$
- ⇐ by structural induction over c (with a nested complete induction over fixpoint index n)

(on the board)

Reminder: Operational/Denotational Semantics

Definition (Operational semantics of statements)

Execution relation $\langle c, \sigma \rangle \rightarrow \sigma'$:

$$\begin{array}{c} \frac{}{\langle \text{skip}, \sigma \rangle \rightarrow \sigma} \text{ (skip)} \quad \frac{\langle a, \sigma \rangle \rightarrow z}{\langle x := a, \sigma \rangle \rightarrow \sigma[x \mapsto z]} \text{ (asgn)} \\ \frac{\langle c_1, \sigma \rangle \rightarrow \sigma' \quad \langle c_2, \sigma' \rangle \rightarrow \sigma''}{\langle c_1 ; c_2, \sigma \rangle \rightarrow \sigma''} \text{ (seq)} \quad \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c_1, \sigma \rangle \rightarrow \sigma'}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'} \text{ (if-t)} \\ \frac{\langle b, \sigma \rangle \rightarrow \text{false} \quad \langle c_2, \sigma \rangle \rightarrow \sigma'}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'} \text{ (if-f)} \quad \frac{\langle b, \sigma \rangle \rightarrow \text{false}}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma} \text{ (wh-f)} \\ \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c, \sigma \rangle \rightarrow \sigma' \quad \langle \text{while } b \text{ do } c, \sigma' \rangle \rightarrow \sigma''}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma''} \text{ (wh-t)} \end{array}$$

Definition (Denotational semantics of statements)

Denotational semantic functional for statements $\mathfrak{C}[\cdot] : Cmd \rightarrow (\Sigma \rightarrow \Sigma)$:

$$\begin{aligned} \mathfrak{C}[\text{skip}] &:= \text{id}_\Sigma \\ \mathfrak{C}[x := a]\sigma &:= \sigma[x \mapsto \mathfrak{A}[a]\sigma] \\ \mathfrak{C}[c_1 ; c_2] &:= \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1] \\ \mathfrak{C}[\text{if } b \text{ then } c_1 \text{ else } c_2] &:= \text{cond}(\mathfrak{B}[b], \mathfrak{C}[c_1], \mathfrak{C}[c_2]) \\ \mathfrak{C}[\text{while } b \text{ do } c] &:= \text{fix}(\Phi) \end{aligned}$$

where $\Phi : (\Sigma \rightarrow \Sigma) \rightarrow (\Sigma \rightarrow \Sigma) : f \mapsto \text{cond}(\mathfrak{B}[b], f \circ \mathfrak{C}[c], \text{id}_\Sigma)$

- 1 Repetition: The Fixpoint Theorem
- 2 Repetition: Equivalence of Operational and Denotational Semantics
- 3 The Axiomatic Approach
- 4 The Assertion Language
- 5 Partial Correctness Properties

Example 8.1

- Let $c \in Cmd$ be given by

```
s:=0; n:=1; while  $\neg(n > N)$  do (s:=s+n; n:=n+1)
```

- How to show that, after termination of c , $\sigma(s) = \sum_{i=1}^{\sigma(N)} i$?
- “Running” c according to the operational semantics is insufficient: every change of $\sigma(N)$ requires a new proof
- Wanted: a more abstract, “symbolic” way of reasoning

Example 8.1

- Let $c \in Cmd$ be given by

```
s:=0; n:=1; while  $\neg(n > N)$  do (s:=s+n; n:=n+1)
```

- How to show that, after termination of c , $\sigma(s) = \sum_{i=1}^{\sigma(N)} i$?
- “Running” c according to the operational semantics is insufficient: every change of $\sigma(N)$ requires a new proof
- Wanted: a more abstract, “symbolic” way of reasoning

Example 8.1

- Let $c \in Cmd$ be given by

```
s:=0; n:=1; while  $\neg(n > N)$  do (s:=s+n; n:=n+1)
```

- How to show that, after termination of c , $\sigma(s) = \sum_{i=1}^{\sigma(N)} i$?
- “Running” c according to the operational semantics is insufficient: every change of $\sigma(N)$ requires a new proof
- Wanted: a more abstract, “symbolic” way of reasoning

Example 8.1

- Let $c \in Cmd$ be given by

```
s:=0; n:=1; while  $\neg(n > N)$  do (s:=s+n; n:=n+1)
```

- How to show that, after termination of c , $\sigma(s) = \sum_{i=1}^{\sigma(N)} i$?
- “Running” c according to the operational semantics is insufficient: every change of $\sigma(N)$ requires a new proof
- Wanted: a more abstract, “symbolic” way of reasoning

Example 8.1 (continued)

Obviously c satisfies the following **assertions** (after execution of the respective statement):

```
s:=0;  
{s = 0}  
n:=1;  
{s = 0  $\wedge$  n = 1}  
while  $\neg(n > N)$  do (s:=s+n; n:=n+1)  
{s =  $\sum_{i=1}^N i$   $\wedge$  n > N}
```

where, e.g., “ $s = 0$ ” means $\sigma(s) = 0$ in the current state $\sigma \in \Sigma$

The Axiomatic Approach III

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{i=1}^{n-1}$ is satisfied
- Proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of property $\{A\} c \{B\}$

For all states $\sigma \in \Sigma$ which satisfy A :

if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

- “Partial” means that nothing is said about c if it fails to terminate
- In particular,

$\{\text{true}\} \text{while true do skip} \{\text{false}\}$

is a valid property

The Axiomatic Approach III

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{i=1}^{n-1}$ is satisfied
- Proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of property $\{A\} c \{B\}$

For all states $\sigma \in \Sigma$ which satisfy A :

if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

- “Partial” means that nothing is said about c if it fails to terminate
- In particular,

$\{\text{true}\} \text{while true do skip} \{\text{false}\}$

is a valid property

The Axiomatic Approach III

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{i=1}^{n-1}$ is satisfied
- Proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of property $\{A\} c \{B\}$

For all states $\sigma \in \Sigma$ which satisfy A :

if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

- “Partial” means that nothing is said about c if it fails to terminate
- In particular,

$\{\text{true}\} \text{while true do skip} \{\text{false}\}$

is a valid property

The Axiomatic Approach III

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{i=1}^{n-1}$ is satisfied
- Proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of property $\{A\} c \{B\}$

For all states $\sigma \in \Sigma$ which satisfy A :

if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

- “Partial” means that nothing is said about c if it fails to terminate
- In particular,

$\{\text{true}\} \text{while true do skip} \{\text{false}\}$

is a valid property

The Axiomatic Approach III

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{i=1}^{n-1}$ is satisfied
- Proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of property $\{A\} c \{B\}$

For all states $\sigma \in \Sigma$ which satisfy A :

if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

- “Partial” means that nothing is said about c if it fails to terminate
- In particular,

$\{\text{true}\} \text{while true do skip} \{\text{false}\}$

is a valid property

The Axiomatic Approach III

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{i=1}^{n-1}$ is satisfied
- Proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of property $\{A\} c \{B\}$

For all states $\sigma \in \Sigma$ which satisfy A :

if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

- “Partial” means that nothing is said about c if it fails to terminate
- In particular,

$\{\text{true}\} \text{while true do skip}\{\text{false}\}$

is a valid property

The Axiomatic Approach III

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{i=1}^{n-1}$ is satisfied
- Proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of property $\{A\} c \{B\}$

For all states $\sigma \in \Sigma$ which satisfy A :

if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

- “**Partial**” means that nothing is said about c if it fails to terminate
- In particular,

$\{\text{true}\} \text{while true do skip} \{\text{false}\}$

is a valid property

The Axiomatic Approach III

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{i=1}^{n-1}$ is satisfied
- Proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of property $\{A\} c \{B\}$

For all states $\sigma \in \Sigma$ which satisfy A :

if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

- “**Partial**” means that nothing is said about c if it fails to terminate
- In particular,

$\{\text{true}\} \text{while true do skip} \{\text{false}\}$

is a valid property

- 1 Repetition: The Fixpoint Theorem
- 2 Repetition: Equivalence of Operational and Denotational Semantics
- 3 The Axiomatic Approach
- 4 The Assertion Language
- 5 Partial Correctness Properties

Syntax of Assertion Language I

Assertions = Boolean expressions + **logical variables**
(to memorize previous values of program variables)

Syntactic categories:

Category	Domain	Meta variable
Logical variables	$LVar$	i
Arithmetic expressions with log. var.	$LExp$	a
Assertions	$Assn$	A, B, C

Assertions = Boolean expressions + **logical variables**
(to memorize previous values of program variables)

Syntactic categories:

Category	Domain	Meta variable
Logical variables	$LVar$	i
Arithmetic expressions with log. var.	$LExp$	a
Assertions	$Assn$	A, B, C

Definition 8.2 (Syntax of assertions)

The **syntax of *Assn*** is defined by the following context-free grammar:

$$a ::= z \mid x \mid i \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in LExp$$
$$A ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \forall i. A \in Assn$$

Abbreviations:

$$A_1 \implies A_2 := \neg A_1 \vee A_2$$
$$\exists i. A := \neg(\forall i. \neg A)$$
$$a_1 \geq a_2 := a_1 > a_2 \vee a_1 = a_2$$
$$\vdots$$

Definition 8.2 (Syntax of assertions)

The **syntax of *Assn*** is defined by the following context-free grammar:

$$\begin{aligned} a ::= & z \mid x \mid \textcolor{red}{i} \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in LExp \\ A ::= & t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \textcolor{red}{\forall i. A} \in Assn \end{aligned}$$

Abbreviations:

$$\begin{aligned} A_1 \implies A_2 &:= \neg A_1 \vee A_2 \\ \exists i. A &:= \neg(\forall i. \neg A) \\ a_1 \geq a_2 &:= a_1 > a_2 \vee a_1 = a_2 \\ &\vdots \end{aligned}$$

Semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of $LExp$)

An **interpretation** is an element of the set

$$Int := \{I \mid I : LVar \rightarrow \mathbb{Z}\}.$$

The **value of an arithmetic expressions with logical variables** is given by the functional

$$\mathfrak{L}[\cdot] : LExp \rightarrow (Int \rightarrow (\Sigma \rightarrow \mathbb{Z}))$$

where

$$\begin{array}{ll} \mathfrak{L}[z]I\sigma := z & \mathfrak{L}[a_1+a_2]I\sigma := \mathfrak{L}[a_1]I\sigma + \mathfrak{L}[a_2]I\sigma \\ \mathfrak{L}[x]I\sigma := \sigma(x) & \mathfrak{L}[a_1-a_2]I\sigma := \mathfrak{L}[a_1]I\sigma - \mathfrak{L}[a_2]I\sigma \\ \mathfrak{L}[i]I\sigma := I(i) & \mathfrak{L}[a_1*a_2]I\sigma := \mathfrak{L}[a_1]I\sigma * \mathfrak{L}[a_2]I\sigma \end{array}$$

Def. 4.6 immediately implies:

Corollary 8.4

For every $a \in AExp$ (without logical variables), $I \in Int$, and $\sigma \in \Sigma$:

$$\mathfrak{L}[a]I\sigma = \mathfrak{A}[a]\sigma.$$

Semantics of $LExp$

Semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of $LExp$)

An **interpretation** is an element of the set

$$Int := \{I \mid I : LVar \rightarrow \mathbb{Z}\}.$$

The **value of an arithmetic expressions with logical variables** is given by the functional

$$\mathfrak{L}[\cdot] : LExp \rightarrow (Int \rightarrow (\Sigma \rightarrow \mathbb{Z}))$$

where

$$\begin{array}{ll} \mathfrak{L}[z]I\sigma := z & \mathfrak{L}[a_1+a_2]I\sigma := \mathfrak{L}[a_1]I\sigma + \mathfrak{L}[a_2]I\sigma \\ \mathfrak{L}[x]I\sigma := \sigma(x) & \mathfrak{L}[a_1-a_2]I\sigma := \mathfrak{L}[a_1]I\sigma - \mathfrak{L}[a_2]I\sigma \\ \mathfrak{L}[i]I\sigma := I(i) & \mathfrak{L}[a_1*a_2]I\sigma := \mathfrak{L}[a_1]I\sigma * \mathfrak{L}[a_2]I\sigma \end{array}$$

Def. 4.6 immediately implies:

Corollary 8.4

For every $a \in AExp$ (without logical variables), $I \in Int$, and $\sigma \in \Sigma$:

$$\mathfrak{L}[a]I\sigma = \mathfrak{A}[a]\sigma.$$

- Formalized by a **satisfaction relation** of the form

$$\sigma \models A$$

(where $\sigma \in \Sigma$ and $A \in Assn$)

- Non-terminating computations captured by **undefined state \perp** :

$$\Sigma_{\perp} := \Sigma \cup \{\perp\}$$

- Modification of interpretations (in analogy to program states):

$$I[i \mapsto z](j) := \begin{cases} z & \text{if } j = i \\ I(j) & \text{otherwise} \end{cases}$$

- Formalized by a **satisfaction** relation of the form

$$\sigma \models A$$

(where $\sigma \in \Sigma$ and $A \in Assn$)

- Non-terminating computations captured by **undefined state \perp** :

$$\Sigma_{\perp} := \Sigma \cup \{\perp\}$$

- Modification of interpretations (in analogy to program states):

$$I[i \mapsto z](j) := \begin{cases} z & \text{if } j = i \\ I(j) & \text{otherwise} \end{cases}$$

- Formalized by a **satisfaction** relation of the form

$$\sigma \models A$$

(where $\sigma \in \Sigma$ and $A \in Assn$)

- Non-terminating computations captured by **undefined state \perp** :

$$\Sigma_{\perp} := \Sigma \cup \{\perp\}$$

- **Modification of interpretations** (in analogy to program states):

$$I[i \mapsto z](j) := \begin{cases} z & \text{if } j = i \\ I(j) & \text{otherwise} \end{cases}$$

Reminder:

$A ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \forall i. A \in Assn$

Definition 8.5 (Semantics of assertions)

Let $A \in Assn$, $\sigma \in \Sigma_{\perp}$, and $I \in Int$. The relation “ σ satisfies A in I ” (notation: $\sigma \models^I A$) is inductively defined by:

$$\begin{aligned}\sigma &\models^I \text{true} \\ \sigma &\models^I a_1 = a_2 \quad \text{if } \mathcal{L}[a_1]I\sigma = \mathcal{L}[a_2]I\sigma \\ \sigma &\models^I a_1 > a_2 \quad \text{if } \mathcal{L}[a_1]I\sigma > \mathcal{L}[a_2]I\sigma \\ \sigma &\models^I \neg A \quad \text{if not } \sigma \models^I A \\ \sigma &\models^I A_1 \wedge A_2 \quad \text{if } \sigma \models^I A_1 \text{ and } \sigma \models^I A_2 \\ \sigma &\models^I A_1 \vee A_2 \quad \text{if } \sigma \models^I A_1 \text{ or } \sigma \models^I A_2 \\ \sigma &\models^I \forall i. A \quad \text{if } \sigma \models^{I[i \mapsto z]} A \text{ for every } z \in \mathbb{Z} \\ \perp &\models^I A\end{aligned}$$

Furthermore “ σ satisfies A ” ($\sigma \models A$) if $\sigma \models^I A$ for every interpretation $I \in Int$, and A is called **valid** ($\models A$) if $\sigma \models A$ for every state $\sigma \in \Sigma$.

In analogy to Corollary 8.4, Def. 4.7 yields:

Corollary 8.6

For every $b \in BExp$ (without logical variables), $I \in Int$, and $\sigma \in \Sigma$:

$$\sigma \models^I b \iff \mathfrak{B}[\![b]\!] \sigma = \text{true}.$$

Definition 8.7 (Extension)

Let $A \in Assn$ and $I \in Int$. The extension of A with respect to I is given by

$$A^I := \{\sigma \in \Sigma_{\perp} \mid \sigma \models^I A\}.$$

In analogy to Corollary 8.4, Def. 4.7 yields:

Corollary 8.6

For every $b \in BExp$ (without logical variables), $I \in Int$, and $\sigma \in \Sigma$:

$$\sigma \models^I b \iff \mathfrak{B}[\![b]\!] \sigma = \text{true}.$$

Definition 8.7 (Extension)

Let $A \in Assn$ and $I \in Int$. The **extension** of A with respect to I is given by

$$A^I := \{\sigma \in \Sigma_{\perp} \mid \sigma \models^I A\}.$$

- 1 Repetition: The Fixpoint Theorem
- 2 Repetition: Equivalence of Operational and Denotational Semantics
- 3 The Axiomatic Approach
- 4 The Assertion Language
- 5 Partial Correctness Properties

Partial Correctness Properties I

Definition 8.8 (Partial correctness properties)

Let $A, B \in Assn$ and $c \in Cmd$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in Int$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \implies \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in I** (notation: $\models^I \{A\} c \{B\}$) if $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$ for every $I \in Int$.

Partial Correctness Properties I

Definition 8.8 (Partial correctness properties)

Let $A, B \in Assn$ and $c \in Cmd$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in Int$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \implies \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in I** (notation: $\models^I \{A\} c \{B\}$) if $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$ for every $I \in Int$.

Partial Correctness Properties I

Definition 8.8 (Partial correctness properties)

Let $A, B \in Assn$ and $c \in Cmd$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in Int$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \implies \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in I** (notation: $\models^I \{A\} c \{B\}$) if $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$ for every $I \in Int$.

Partial Correctness Properties I

Definition 8.8 (Partial correctness properties)

Let $A, B \in Assn$ and $c \in Cmd$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in Int$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \implies \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in I** (notation: $\models^I \{A\} c \{B\}$) if $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$ for every $I \in Int$.