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@ Repetition: The Fixpoint Theorem
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The Fixpoint Theorem

Theorem (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) == |_|{F" (L]0) |n €N}

is the least fizpoint of F' where

FO(d) := d and F"TY(d) := F(F™(d)).
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Application to fix(P)

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Let b € BExp, ¢ € Cmd, and ®(f) := cond(B[b], f o €[c],ids). Then

graph(fix(®)) = _J graph(®"(fy))

neN

Proof.
Using

@ Lemma 5.12
((X -» ¥,C) CCPO with least element fp; LUB = union of graphs)

o Lemma 6.7 (¢ continuous)

@ Theorem 7.1 (Fixpoint Theorem)
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© Repetition: Equivalence of Operational and Denotational Semantics
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Equivalence of Semantics 1

Remember: in Def. 4.3, O[.] : Cmd — (X -» X) was given by

Olc](c) =0’ < {c,0) — o’

Theorem (Coincidence Theorem)

For every c € Cmd,
Olc] = €[],

ie., O[] = €[].
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Equivalence of Semantics 11

The proof of Theorem 7.4 employs the following auxiliary propositions:

Lemma
Q@ For everya € AExp, 0 € X, and z € Z:

(a,0) = z <= Aa](o) = =.

© For everyb e BEzp, 0 € X, and t € B:

(b,o) —t < Bb](0) =t.

@ see Exercise 3.2

© analogously
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Equivalence of Semantics 111

Proof (Theorem 7.4).

We have to show that
(c,0) = 0 = €[c](c) =0’

= by structural induction over the derivation tree of
(c,0) — o’

< by structural induction over ¢ (with a nested complete
induction over fixpoint index n)

(on the board) O
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Reminder: Operational/Denotational Semantics

Definition (Operational semantics of statements)

Execution relation {(c, o) — o”:

i) (0.0) -

(asgn)

(skip,0) — o (x :=a,0) — o[z — 7]

(b,0) — true  {(c1,0) — o’

(e1,0) = o' {eno) — 0" (. i)
(cr;¢0,0) — o (if b then c¢; else cp,0) — o’
!
(b,o) — false (c2,0) — 0o _(GE£) (b,0) — false frbh)

(if b then ¢; else ¢p,0) — o (while bdo ¢c,0) — o

(b,0) — true {c,0) — o’ (while b do c,0’) — o” (wh-t)

(while b do ¢,0) — o”

Definition (Denotational semantics of statements)

Denotational semantic functional for statements €[.] : Cmd — (X -» X):
C[skip] := idx
€z :=a]o := o[z — Aa]o]
Clers 2] == €fez] o €fen]
C[if b then ¢; else c2] := cond(B[b], €[c1], €cz])
Cwhile b do ] := fix(P)
where ¢ : (X -» X) — (X -» X) : f — cond(B[b], f o €[], idx)
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© The Axiomatic Approach
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The Axiomatic Approach I

Example 8.1

o Let ¢ € Cmd be given by

s:=0; n:=1; while = (n>N) do (s:=s+n; n:=n+1)
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The Axiomatic Approach I

Example 8.1

o Let ¢ € Cmd be given by

s:=0; n:=1; while = (n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = Zfz(Nl) i?
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The Axiomatic Approach I

Example 8.1

o Let ¢ € Cmd be given by

s:=0; n:=1; while = (n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = Zfz(Nl) i?

o “Running” c¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof
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The Axiomatic Approach I

Example 8.1

o Let ¢ € Cmd be given by

s:=0; n:=1; while = (n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = Zfz(Nl) i?

o “Running” c¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

@ Wanted: a more abstract, “symbolic” way of reasoning
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The Axiomatic Approach II

Example 8.1 (continued)

Obviously c¢ satisfies the following assertions (after execution of the
respective statement):

=0
{s = ,0 An=1}

while —(n>N) do (s:=s+n; n:=n+1)
{s=Y1,iAn>N}

where, e.g., “s = 0” means o(s) = 0 in the current state o € X
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The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
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The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
o Also, “n > N” follows directly from the loop’s execution condition
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The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
o Also, “n > N” follows directly from the loop’s execution condition
o But how to obtain the final value of s?
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—ll is
satisfied

¢ © ¢ ¢
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—ll is
satisfied

Proof system employs partial correctness properties of the form
{A} c¢{B} with assertions A, B and ¢ € Cmd

¢ © ¢ ¢

©
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—ll is

satisfied

@ Proof system employs partial correctness properties of the form
{A} c¢{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o/ € ¥, then ¢’ satisfies B.
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—ll is

satisfied

@ Proof system employs partial correctness properties of the form
{A} c¢{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o/ € ¥, then ¢’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—ll is

satisfied

@ Proof system employs partial correctness properties of the form
{A} c¢{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o/ € ¥, then ¢’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate
o In particular,
{true} while true do skip {false}

is a valid property
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@ The Assertion Language
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Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)
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Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable
Logical variables LVar 1

Arithmetic expressions LFExp a

with log. var.

Assertions Assn A B,C
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Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context—free grammar:

a:=z|xl|i|ai+ay | ai-az | az*apx € LEzp
A=t | a1=ap | a1>an | -A | A1 N A | A1V A | Vi.A € Assn
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Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context—free grammar:

a:=z|xl|i|ai+ay | ai-az | az*apx € LEzp
A=t | a1=ap | a1>an | -A | A1 N A | A1V A | Vi.A € Assn

Abbreviations:

A = A = —-A; VA
Ji.A 1= ~(Vi.—A)
a1 > az == ai>as V ai=as
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Semantics of LFxp

Semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExzp)
An interpretation is an element of the set
Int :={I|I:LVar — 7}.
The value of an arithmetic expressions with logical variables is given by
the functional

L[] : LEzp — (Int — (X — Z))
where
Llz]lo =z Llaitaz]lo = Llai]lo + L[az]Io
Llz]lo = o(x) Llai-azx]lo := Llai]lo — L[az]Io
Lli]lo = I(3) Llai*az]Io = Llai]lo * Llaz]Io
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Semantics of LFxp

Semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExzp)
An interpretation is an element of the set
Int :={I|I:LVar — 7}.
The value of an arithmetic expressions with logical variables is given by
the functional

L[] : LEzp — (Int — (X — Z))
where
Llz]Io =z Llai+az]lo = Llai]lo + Laz]lo
Llz]lo = o(x) Llai-azx]lo := Llai]lo — L[az]Io
Lli]lo = I(3) Llai*az]Io = Llai]lo * Llaz]Io

Def. 4.6 immediately implies:

Corollary 8.4

For every a € AExp (without logical variables), I € Int, and o € ¥:
Lla]lo = Afa]o.
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Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

Rm Semantics and Verification of Software Summer semester 2007



Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

o Non—terminating computations captured by undefined state L:

b} ZZZU{_L}
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Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

o Non—terminating computations captured by undefined state L:

b} ZZZU{_L}

@ Modification of interpretations (in analogy to program states):

. N [z ifj=1
Ifi = 2](j) = {[(j) otherwise
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Semantics of Assertions 11

Reminder:
A=t | a1=ay | a1>an | -A | A1 N As | A1V As | Vi.A € Assn

Definition 8.5 (Semantics of assertions)

Let A € Assn, 0 € ¥ |, and I € Int. The relation “o satisfies A in [”
(notation: o =! A) is inductively defined by:

o =1 true

o =l ar=as if £Ja1]lo = Llaz]lo

o =l ar>an if Lla1]lo > Llaz]lo

o=l -A if not o =1 A

O')ZIAl/\Az ifa):IAlanda):IAg

U):IA]_\/AQ ifO‘):IAlol'O'):IAQ

o = Vvi.A if o =121 A for every z € Z

Furthermore “o satisfies A” (o |= A) if o =1 A for every interpretation
I € Int, and A is called valid (= A) if 0 = A for every state o € ¥.
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Semantics of Assertions III

In analogy to Corollary 8.4, Def. 4.7 yields:

For every b € BEzp (without logical variables), I € Int, and o € X:

o =l b < B[b]o = true.
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Semantics of Assertions III

In analogy to Corollary 8.4, Def. 4.7 yields:

For every b € BEzp (without logical variables), I € Int, and o € X:

o =l b < B[b]o = true.

Definition 8.7 (Extension)

Let A € Assn and I € Int. The extension of A with respect to [ is
given by

Al ={ocex, |oE" A}
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@ Partial Correctness Properties
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Partial Correctness Properties 1

Definition 8.8 (Partial correctness properties)

Let A,B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.
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Partial Correctness Properties 1

Definition 8.8 (Partial correctness properties)
Let A,B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given 0 € X | and [ € Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
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Partial Correctness Properties 1

Definition 8.8 (Partial correctness properties)

Let A,B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given 0 € X | and [ € Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € £ (or equivalently: €[c]JA! C BY).
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Partial Correctness Properties 1

Definition 8.8 (Partial correctness properties)

Let A,B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given 0 € X | and [ € Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € £ (or equivalently: €[c]JA! C BY).
o {A}c{B} is called valid (notation: = {A}c{B}) if & {A}c{B}
for every I € Int.
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