Semantics and Verification of Software

Lecture 8: Axiomatic Semantics of WHILE

Thomas Noll

Lehrstuhl fiir Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/
P

Summer semester 2007

Rm Semantics and Veri ion of Software Summer semester 2007

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

@ Repetition: The Fixpoint Theorem

Rm Semantics and Verification of Software Summer semester 2007

The Fixpoint Theorem

Theorem (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) == |_|{F" (L]0) |n €N}

is the least fizpoint of F' where

FO(d) := d and F"TY(d) := F(F™(d)).

m Semantics and Verification of Software Summer semester 2007

Application to fix(P)

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Let b € BExp, ¢ € Cmd, and ®(f) := cond(B[b], f o €[c],ids). Then

graph(fix(®)) = _J graph(®"(fy))

neN

Proof.
Using

@ Lemma 5.12
((X -» ¥,C) CCPO with least element fp; LUB = union of graphs)

o Lemma 6.7 (¢ continuous)

@ Theorem 7.1 (Fixpoint Theorem)

m' Semantics and Verification of Software Summer semester 2007

© Repetition: Equivalence of Operational and Denotational Semantics

Rm Semantics and V tion of Software Summer semester 2007

Equivalence of Semantics 1

Remember: in Def. 4.3, O[.] : Cmd — (X -» X) was given by

Olc](c) =0’ < {c,0) — o’

Theorem (Coincidence Theorem)

For every c € Cmd,
Olc] = €[],

ie., O[] = €[].

m' Semantics and Verification of Software Summer semester 2007

Equivalence of Semantics 11

The proof of Theorem 7.4 employs the following auxiliary propositions:

Lemma
Q@ For everya € AExp, 0 € X, and z € Z:

(a,0) = z <= Aa](o) = =.

© For everyb e BEzp, 0 € X, and t € B:

(b,o) —t < Bb](0) =t.

@ see Exercise 3.2

© analogously

m' Semantics and Verification of Software Summer semester 2007

Equivalence of Semantics 111

Proof (Theorem 7.4).

We have to show that
(c,0) = 0 = €c =0’

= by structural induction over the derivation tree of
(c,0) — o’

< by structural induction over ¢ (with a nested complete
induction over fixpoint index n)

(on the board) O

m Semantics and Verification of Software Summer semester 2007

Reminder: Operational/Denotational Semantics

Definition (Operational semantics of statements)

Execution relation {(c, o) — o”:

i) (0.0) -

(asgn)

(skip,0) — o (x :=a,0) — o[z — 7]

(b,0) — true {(c1,0) — o’

(e1,0) = o' {eno) — 0" (. i)
(cr;¢0,0) — o (if b then c¢; else cp,0) — o’
!
(b,o) — false (c2,0) — 0o _(GE£) (b,0) — false frbh)

(if b then ¢; else ¢p,0) — o (while bdo ¢c,0) — o

(b,0) — true {c,0) — o’ (while b do c,0’) — o” (wh-t)

(while b do ¢,0) — o”

Definition (Denotational semantics of statements)

Denotational semantic functional for statements €[.] : Cmd — (X -» X):
C[skip] := idx
€z :=a]o := o[z — Aa]o]
Clers 2] == €fez] o €fen]
C[if b then ¢; else c2] := cond(B[b], €[c1], €cz])
Cwhile b do] := fix(P)
where ¢ : (X -» X) — (X -» X) : f — cond(B[b], f o €[], idx)

m Semantics and Verification of Software Summer semester 2007

© The Axiomatic Approach

Rm Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach I

Example 8.1

o Let ¢ € Cmd be given by

s:=0; n:=1; while = (n>N) do (s:=s+n; n:=n+1)

m Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach I

Example 8.1

o Let ¢ € Cmd be given by

s:=0; n:=1; while = (n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = Zfz(Nl) i?

m Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach I

Example 8.1

o Let ¢ € Cmd be given by

s:=0; n:=1; while = (n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = Zfz(Nl) i?

o “Running” c¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach I

Example 8.1

o Let ¢ € Cmd be given by

s:=0; n:=1; while = (n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = Zfz(Nl) i?

o “Running” c¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

@ Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach II

Example 8.1 (continued)

Obviously c¢ satisfies the following assertions (after execution of the
respective statement):

=0
{s = ,0 An=1}

while —(n>N) do (s:=s+n; n:=n+1)
{s=Y1,iAn>N}

where, e.g., “s = 0” means o(s) = 0 in the current state o € X

m Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)

Rm Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
o Also, “n > N” follows directly from the loop’s execution condition

Rm Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
o Also, “n > N” follows directly from the loop’s execution condition
o But how to obtain the final value of s?

Rm Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—ll is
satisfied

¢ © ¢ ¢

Rm Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—ll is
satisfied

Proof system employs partial correctness properties of the form
{A} c¢{B} with assertions A, B and ¢ € Cmd

¢ © ¢ ¢

©

Rm Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—ll is

satisfied

@ Proof system employs partial correctness properties of the form
{A} c¢{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o/ € ¥, then ¢’ satisfies B.

m' Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—ll is

satisfied

@ Proof system employs partial correctness properties of the form
{A} c¢{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o/ € ¥, then ¢’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate

m' Semantics and Verification of Software Summer semester 2007

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—ll is

satisfied

@ Proof system employs partial correctness properties of the form
{A} c¢{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o/ € ¥, then ¢’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate
o In particular,
{true} while true do skip {false}

is a valid property
m' Semantics and Verification of Software Summer semester 2007

@ The Assertion Language

Rm Semantics and Verification of Software Summer semester 2007

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Rm Semantics and Verification of Software Summer semester 2007

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable
Logical variables LVar 1

Arithmetic expressions LFExp a

with log. var.

Assertions Assn A B,C

Rm Semantics and Verification of Software Summer semester 2007

Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context—free grammar:

a:=z|xl|i|ai+ay | ai-az | az*apx € LEzp
A=t | a1=ap | a1>an | -A | A1 N A | A1V A | Vi.A € Assn

m' Semantics and Verification of Software Summer semester 2007

Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context—free grammar:

a:=z|xl|i|ai+ay | ai-az | az*apx € LEzp
A=t | a1=ap | a1>an | -A | A1 N A | A1V A | Vi.A € Assn

Abbreviations:

A = A = —-A; VA
Ji.A 1= ~(Vi.—A)
a1 > az == ai>as V ai=as

m' Semantics and Verification of Software Summer semester 2007

Semantics of LFxp

Semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExzp)
An interpretation is an element of the set
Int :={I|I:LVar — 7}.
The value of an arithmetic expressions with logical variables is given by
the functional

L[] : LEzp — (Int — (X — Z))
where
Llz]lo =z Llaitaz]lo = Llai]lo + L[az]Io
Llz]lo = o(x) Llai-azx]lo := Llai]lo — L[az]Io
Lli]lo = I(3) Llai*az]Io = Llai]lo * Llaz]Io

m Semantics and Verification of Software Summer semester 2007

Semantics of LFxp

Semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExzp)
An interpretation is an element of the set
Int :={I|I:LVar — 7}.
The value of an arithmetic expressions with logical variables is given by
the functional

L[] : LEzp — (Int — (X — Z))
where
Llz]Io =z Llai+az]lo = Llai]lo + Laz]lo
Llz]lo = o(x) Llai-azx]lo := Llai]lo — L[az]Io
Lli]lo = I(3) Llai*az]Io = Llai]lo * Llaz]Io

Def. 4.6 immediately implies:

Corollary 8.4

For every a € AExp (without logical variables), I € Int, and o € ¥:
Lla]lo = Afa]o.

m' Semantics and Verification of Software Summer semester 2007

Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

o Non—terminating computations captured by undefined state L:

b} ZZZU{_L}

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

o Non—terminating computations captured by undefined state L:

b} ZZZU{_L}

@ Modification of interpretations (in analogy to program states):

. N [z ifj=1
Ifi = 2](j) = {[(j) otherwise

Rm Semantics and Verification of Software Summer semester 2007

Semantics of Assertions 11

Reminder:
A=t | a1=ay | a1>an | -A | A1 N As | A1V As | Vi.A € Assn

Definition 8.5 (Semantics of assertions)

Let A € Assn, 0 € ¥ |, and I € Int. The relation “o satisfies A in [”
(notation: o =! A) is inductively defined by:

o =1 true

o =l ar=as if £Ja1]lo = Llaz]lo

o =l ar>an if Lla1]lo > Llaz]lo

o=l -A if not o =1 A

O')ZIAl/\Az ifa):IAlanda):IAg

U):IA]_\/AQ ifO‘):IAlol'O'):IAQ

o = Vvi.A if o =121 A for every z € Z

Furthermore “o satisfies A” (o |= A) if o =1 A for every interpretation
I € Int, and A is called valid (= A) if 0 = A for every state o € ¥.

m' Semantics and Verification of Software Summer semester 2007

Semantics of Assertions III

In analogy to Corollary 8.4, Def. 4.7 yields:

For every b € BEzp (without logical variables), I € Int, and o € X:

o =l b < B[b]o = true.

m' Semantics and Verification of Software Summer semester 2007

Semantics of Assertions III

In analogy to Corollary 8.4, Def. 4.7 yields:

For every b € BEzp (without logical variables), I € Int, and o € X:

o =l b < B[b]o = true.

Definition 8.7 (Extension)

Let A € Assn and I € Int. The extension of A with respect to [is
given by

Al ={ocex, |oE" A}

m Semantics and Verification of Software Summer semester 2007

@ Partial Correctness Properties

Rm Semantics and Verification of Software Summer semester 2007

Partial Correctness Properties 1

Definition 8.8 (Partial correctness properties)

Let A,B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

m' Semantics and Verification of Software Summer semester 2007

Partial Correctness Properties 1

Definition 8.8 (Partial correctness properties)
Let A,B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given 0 € X | and [€ Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).

m' Semantics and Verification of Software Summer semester 2007

Partial Correctness Properties 1

Definition 8.8 (Partial correctness properties)

Let A,B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given 0 € X | and [€ Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € £ (or equivalently: €[c]JA! C BY).

m' Semantics and Verification of Software Summer semester 2007

Partial Correctness Properties 1

Definition 8.8 (Partial correctness properties)

Let A,B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given 0 € X | and [€ Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € £ (or equivalently: €[c]JA! C BY).
o {A}c{B} is called valid (notation: = {A}c{B}) if & {A}c{B}
for every I € Int.

m' Semantics and Verification of Software Summer semester 2007

	Repetition: The Fixpoint Theorem
	Repetition: Equivalence of Operational and Denotational Semantics
	The Axiomatic Approach
	The Assertion Language
	Partial Correctness Properties

