
Semantics and Verification of Software
Lecture 8: Axiomatic Semantics of WHILE

Thomas Noll

Lehrstuhl für Informatik 2

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Summer semester 2007

Semantics and Verification of Software Summer semester 2007 1

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw/

Outline

1 Repetition: The Fixpoint Theorem

2 Repetition: Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

5 Partial Correctness Properties

Semantics and Verification of Software Summer semester 2007 2

The Fixpoint Theorem

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D,⊑) be a CCPO and F : D → D continuous. Then

fix(F) :=
⊔

{

Fn

(

⊔

∅
)

| n ∈ N}

is the least fixpoint of F where

F 0(d) := d and Fn+1(d) := F (Fn(d)).

Semantics and Verification of Software Summer semester 2007 3

Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃

n∈N graph(Φn(f∅))

Proof.

Using

Lemma 5.12
((Σ(Σ,⊑) CCPO with least element f∅; LUB = union of graphs)

Lemma 6.7 (Φ continuous)

Theorem 7.1 (Fixpoint Theorem)

Semantics and Verification of Software Summer semester 2007 4

Outline

1 Repetition: The Fixpoint Theorem

2 Repetition: Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

5 Partial Correctness Properties

Semantics and Verification of Software Summer semester 2007 5

Equivalence of Semantics I

Remember: in Def. 4.3, OJ.K : Cmd → (Σ(Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem (Coincidence Theorem)

For every c ∈ Cmd,
OJcK = CJcK,

i.e., OJ.K = CJ.K.

Semantics and Verification of Software Summer semester 2007 6

Equivalence of Semantics II

The proof of Theorem 7.4 employs the following auxiliary propositions:

Lemma
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z.

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 see Exercise 3.2

2 analogously

Semantics and Verification of Software Summer semester 2007 7

Equivalence of Semantics III

Proof (Theorem 7.4).

We have to show that

〈c, σ〉 → σ′ ⇐⇒ CJcK(σ) = σ′

⇒ by structural induction over the derivation tree of
〈c, σ〉 → σ′

⇐ by structural induction over c (with a nested complete
induction over fixpoint index n)

(on the board)

Semantics and Verification of Software Summer semester 2007 8

Reminder: Operational/Denotational Semantics

Definition (Operational semantics of statements)

Execution relation 〈c, σ〉 → σ′:

〈skip, σ〉 → σ
(skip)

〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]
(asgn)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(seq)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(if–t)

〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(if–f)

〈b, σ〉 → false

〈while b do c, σ〉 → σ
(wh–f)

〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′
(wh–t)

Definition (Denotational semantics of statements)

Denotational semantic functional for statements CJ.K : Cmd → (Σ(Σ):
CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K, CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ(Σ) → (Σ(Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Summer semester 2007 9

Outline

1 Repetition: The Fixpoint Theorem

2 Repetition: Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

5 Partial Correctness Properties

Semantics and Verification of Software Summer semester 2007 10

The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by

s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c, σ(s) =
∑σ(N)

i=1 i?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Summer semester 2007 11

The Axiomatic Approach II

Example 8.1 (continued)

Obviously c satisfies the following assertions (after execution of the
respective statement):

s:=0;

{s = 0}
n:=1;

{s = 0 ∧ n = 1}
while ¬(n>N) do (s:=s+n; n:=n+1)

{s =
∑N

i=1 i ∧ n > N}

where, e.g., “s = 0” means σ(s) = 0 in the current state σ ∈ Σ

Semantics and Verification of Software Summer semester 2007 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
i=1 is

satisfied
Proof system employs partial correctness properties of the form
{A} c {B} with assertions A,B and c ∈ Cmd
Interpretation:

Validity of property {A} c {B}

For all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property

Semantics and Verification of Software Summer semester 2007 13

Outline

1 Repetition: The Fixpoint Theorem

2 Repetition: Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

5 Partial Correctness Properties

Semantics and Verification of Software Summer semester 2007 14

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable
Logical variables LVar i

Arithmetic expressions
with log. var.

LExp a

Assertions Assn A,B,C

Semantics and Verification of Software Summer semester 2007 15

Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context–free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Abbreviations:

A1 =⇒ A2 := ¬A1 ∨ A2

∃i.A := ¬(∀i.¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...

Semantics and Verification of Software Summer semester 2007 16

Semantics of LExp

Semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExp)

An interpretation is an element of the set
Int := {I | I : LVar → Z}.

The value of an arithmetic expressions with logical variables is given by
the functional

LJ.K : LExp → (Int → (Σ → Z))
where

LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ

LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ

LJiKIσ := I(i) LJa1*a2KIσ := LJa1KIσ ∗ LJa2KIσ

Def. 4.6 immediately implies:

Corollary 8.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:
LJaKIσ = AJaKσ.

Semantics and Verification of Software Summer semester 2007 17

Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non–terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I[i 7→ z](j) :=

{

z if j = i

I(j) otherwise

Semantics and Verification of Software Summer semester 2007 18

Semantics of Assertions II

Reminder:

A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Definition 8.5 (Semantics of assertions)

Let A ∈ Assn, σ ∈ Σ⊥, and I ∈ Int . The relation “σ satisfies A in I”
(notation: σ |=I A) is inductively defined by:

σ |=I true
σ |=I a1=a2 if LJa1KIσ = LJa2KIσ

σ |=I a1>a2 if LJa1KIσ > LJa2KIσ

σ |=I ¬A if not σ |=I A

σ |=I A1 ∧ A2 if σ |=I A1 and σ |=I A2

σ |=I A1 ∨ A2 if σ |=I A1 or σ |=I A2

σ |=I ∀i.A if σ |=I[i7→z] A for every z ∈ Z
⊥ |=I A

Furthermore “σ satisfies A” (σ |= A) if σ |=I A for every interpretation
I ∈ Int , and A is called valid (|= A) if σ |= A for every state σ ∈ Σ.

Semantics and Verification of Software Summer semester 2007 19

Semantics of Assertions III

In analogy to Corollary 8.4, Def. 4.7 yields:

Corollary 8.6

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.

Definition 8.7 (Extension)

Let A ∈ Assn and I ∈ Int . The extension of A with respect to I is
given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Semantics and Verification of Software Summer semester 2007 20

Outline

1 Repetition: The Fixpoint Theorem

2 Repetition: Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

5 Partial Correctness Properties

Semantics and Verification of Software Summer semester 2007 21

Partial Correctness Properties I

Definition 8.8 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B

(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ BI).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ BI).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int .

Semantics and Verification of Software Summer semester 2007 22

	Repetition: The Fixpoint Theorem
	Repetition: Equivalence of Operational and Denotational Semantics
	The Axiomatic Approach
	The Assertion Language
	Partial Correctness Properties

