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The Fixpoint Theorem

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D,⊑) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{

Fn

(

⊔

∅
)

| n ∈ N}

is the least fixpoint of F where

F 0(d) := d and Fn+1(d) := F (Fn(d)).
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Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃

n∈N graph(Φn(f∅))

Proof.

Using

Lemma 5.12
((Σ( Σ,⊑) CCPO with least element f∅; LUB = union of graphs)

Lemma 6.7 (Φ continuous)

Theorem 7.1 (Fixpoint Theorem)
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Equivalence of Semantics I

Remember: in Def. 4.3, OJ.K : Cmd → (Σ( Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem (Coincidence Theorem)

For every c ∈ Cmd,
OJcK = CJcK,

i.e., OJ.K = CJ.K.
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Equivalence of Semantics II

The proof of Theorem 7.4 employs the following auxiliary propositions:

Lemma
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z.

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 see Exercise 3.2

2 analogously
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Equivalence of Semantics III

Proof (Theorem 7.4).

We have to show that

〈c, σ〉 → σ′ ⇐⇒ CJcK(σ) = σ′

⇒ by structural induction over the derivation tree of
〈c, σ〉 → σ′

⇐ by structural induction over c (with a nested complete
induction over fixpoint index n)

(on the board)
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Reminder: Operational/Denotational Semantics

Definition (Operational semantics of statements)

Execution relation 〈c, σ〉 → σ′:

〈skip, σ〉 → σ
(skip)

〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]
(asgn)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(seq)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(if–t)

〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(if–f)

〈b, σ〉 → false

〈while b do c, σ〉 → σ
(wh–f)

〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′
(wh–t)

Definition (Denotational semantics of statements)

Denotational semantic functional for statements CJ.K : Cmd → (Σ( Σ):
CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K, CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ( Σ) → (Σ( Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
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The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by

s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c, σ(s) =
∑σ(N)

i=1 i?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning
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The Axiomatic Approach II

Example 8.1 (continued)

Obviously c satisfies the following assertions (after execution of the
respective statement):

s:=0;

{s = 0}
n:=1;

{s = 0 ∧ n = 1}
while ¬(n>N) do (s:=s+n; n:=n+1)

{s =
∑N

i=1 i ∧ n > N}

where, e.g., “s = 0” means σ(s) = 0 in the current state σ ∈ Σ
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
i=1 is

satisfied
Proof system employs partial correctness properties of the form
{A} c {B} with assertions A,B and c ∈ Cmd
Interpretation:

Validity of property {A} c {B}

For all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property
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Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable
Logical variables LVar i

Arithmetic expressions
with log. var.

LExp a

Assertions Assn A,B,C
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Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context–free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Abbreviations:

A1 =⇒ A2 := ¬A1 ∨ A2

∃i.A := ¬(∀i.¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...
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Semantics of LExp

Semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExp)

An interpretation is an element of the set
Int := {I | I : LVar → Z}.

The value of an arithmetic expressions with logical variables is given by
the functional

LJ.K : LExp → (Int → (Σ → Z))
where

LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ

LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ

LJiKIσ := I(i) LJa1*a2KIσ := LJa1KIσ ∗ LJa2KIσ

Def. 4.6 immediately implies:

Corollary 8.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:
LJaKIσ = AJaKσ.
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Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non–terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I[i 7→ z](j) :=

{

z if j = i

I(j) otherwise
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Semantics of Assertions II

Reminder:

A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Definition 8.5 (Semantics of assertions)

Let A ∈ Assn, σ ∈ Σ⊥, and I ∈ Int . The relation “σ satisfies A in I”
(notation: σ |=I A) is inductively defined by:

σ |=I true
σ |=I a1=a2 if LJa1KIσ = LJa2KIσ

σ |=I a1>a2 if LJa1KIσ > LJa2KIσ

σ |=I ¬A if not σ |=I A

σ |=I A1 ∧ A2 if σ |=I A1 and σ |=I A2

σ |=I A1 ∨ A2 if σ |=I A1 or σ |=I A2

σ |=I ∀i.A if σ |=I[i7→z] A for every z ∈ Z
⊥ |=I A

Furthermore “σ satisfies A” (σ |= A) if σ |=I A for every interpretation
I ∈ Int , and A is called valid (|= A) if σ |= A for every state σ ∈ Σ.
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Semantics of Assertions III

In analogy to Corollary 8.4, Def. 4.7 yields:

Corollary 8.6

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.

Definition 8.7 (Extension)

Let A ∈ Assn and I ∈ Int . The extension of A with respect to I is
given by

AI := {σ ∈ Σ⊥ | σ |=I A}.
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Partial Correctness Properties I

Definition 8.8 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B

(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ BI).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ BI).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int .
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