

Semantics and Verification of Software

Lecture 9: Axiomatic Semantics of WHILE

Thomas Noll

Lehrstuhl für Informatik 2
RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw/>

Summer semester 2007

- 1 Repetition: Assertions and Partial Correctness Properties
- 2 A Valid Partial Correctness Property
- 3 Proof Rules for Partial Correctness
- 4 Soundness of Hoare Logic

Assertions

Definition (Syntax of assertions)

The **syntax of $Assn$** is defined by the following context-free grammar:

$$a ::= z \mid x \mid i \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in LExp$$

$$A ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \forall i. A \in Assn$$

Definition (Semantics of $LExp$)

An **interpretation** is an element of the set

$$Int := \{I \mid I : LVar \rightarrow \mathbb{Z}\}.$$

The **value of an arithmetic expressions with logical variables** is given by the functional

$$\mathfrak{L}[\cdot] : LExp \rightarrow (Int \rightarrow (\Sigma \rightarrow \mathbb{Z}))$$

where

$$\begin{array}{ll} \mathfrak{L}[z]I\sigma := z & \mathfrak{L}[a_1 + a_2]I\sigma := \mathfrak{L}[a_1]I\sigma + \mathfrak{L}[a_2]I\sigma \\ \mathfrak{L}[x]I\sigma := \sigma(x) & \mathfrak{L}[a_1 - a_2]I\sigma := \mathfrak{L}[a_1]I\sigma - \mathfrak{L}[a_2]I\sigma \\ \mathfrak{L}[i]I\sigma := I(i) & \mathfrak{L}[a_1 * a_2]I\sigma := \mathfrak{L}[a_1]I\sigma * \mathfrak{L}[a_2]I\sigma \end{array}$$

Semantics of Assertions

Definition (Semantics of assertions)

Let $A \in Assn$, $\sigma \in \Sigma_{\perp}$, and $I \in Int$. The relation “ σ satisfies A in I ” (notation: $\sigma \models^I A$) is inductively defined by:

$$\begin{aligned}\sigma &\models^I \text{true} \\ \sigma &\models^I a_1 = a_2 \quad \text{if } \mathcal{L}[a_1]I\sigma = \mathcal{L}[a_2]I\sigma \\ \sigma &\models^I a_1 > a_2 \quad \text{if } \mathcal{L}[a_1]I\sigma > \mathcal{L}[a_2]I\sigma \\ \sigma &\models^I \neg A \quad \text{if not } \sigma \models^I A \\ \sigma &\models^I A_1 \wedge A_2 \quad \text{if } \sigma \models^I A_1 \text{ and } \sigma \models^I A_2 \\ \sigma &\models^I A_1 \vee A_2 \quad \text{if } \sigma \models^I A_1 \text{ or } \sigma \models^I A_2 \\ \sigma &\models^I \forall i. A \quad \text{if } \sigma \models^{I[i \mapsto z]} A \text{ for every } z \in \mathbb{Z} \\ \perp &\models^I A\end{aligned}$$

Furthermore σ satisfies A ($\sigma \models A$) if $\sigma \models^I A$ for every interpretation $I \in Int$, and A is called **valid** ($\models A$) if $\sigma \models A$ for every state $\sigma \in \Sigma$.

Definition (Extension)

Let $A \in Assn$ and $I \in Int$. The **extension** of A with respect to I is given by

$$A^I := \{\sigma \in \Sigma_{\perp} \mid \sigma \models^I A\}.$$

Definition (Partial correctness properties)

Let $A, B \in \text{Assn}$ and $c \in \text{Cmd}$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \implies \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in I** (notation: $\models^I \{A\} c \{B\}$) if $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$ for every $I \in \text{Int}$.

- 1 Repetition: Assertions and Partial Correctness Properties
- 2 A Valid Partial Correctness Property
- 3 Proof Rules for Partial Correctness
- 4 Soundness of Hoare Logic

Example 9.1

- Let $x \in Var$ and $i \in LVar$. We have to show:

$$\models \{i \leq x\} x := x+1 \{i < x\}$$

- According to Def. 8.8, this is equivalent to

$$\sigma \models^I \{i \leq x\} x := x+1 \{i < x\}$$

for every $\sigma \in \Sigma_\perp$ and $I \in Int$

- For $\sigma = \perp$ this is trivial. So let $\sigma \in \Sigma$:

$$\sigma \models^I (i \leq x)$$

$$\implies \mathcal{L}[i]I\sigma \leq \mathcal{L}[x]I\sigma \quad (\text{Def. 8.5})$$

$$\implies I(i) \leq \sigma(x) \quad (\text{Def. 8.3})$$

$$\implies I(i) < \sigma(x) + 1$$

$$= (\mathcal{C}[x := x+1]\sigma)(x)$$

$$\implies \mathcal{C}[x := x+1]\sigma \models^I (i < x)$$

\implies claim

- 1 Repetition: Assertions and Partial Correctness Properties
- 2 A Valid Partial Correctness Property
- 3 Proof Rules for Partial Correctness
- 4 Soundness of Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition 9.2 (Hoare Logic)

The **Hoare rules** are given by

$$\frac{\{A\} \text{ skip } \{A\}}{\{A\} \text{ skip } \{A\}} \text{ (skip)} \quad \frac{\{A[x \mapsto a]\} x := a \{A\}}{\{A[x \mapsto a]\} x := a \{A\}} \text{ (asgn)}$$
$$\frac{\{A\} c_1 \{C\} \quad \{C\} c_2 \{B\}}{\{A\} c_1; c_2 \{B\}} \text{ (seq)} \quad \frac{\{A \wedge b\} c_1 \{B\} \quad \{A \wedge \neg b\} c_2 \{B\}}{\{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{B\}} \text{ (if)}$$
$$\frac{\{A \wedge b\} c \{A\}}{\{A\} \text{ while } b \text{ do } c \{A \wedge \neg b\}} \text{ (while)}$$
$$\frac{\models (A \implies A') \quad \{A'\} c \{B'\} \quad \models (B' \implies B)}{\{A\} c \{B\}} \text{ (cons)}$$

A partial correctness property is **provable** (notation: $\vdash \{A\} c \{B\}$) if it is derivable by the Hoare rules. In case of (while), A is called a **(loop) invariant**.

Here $A[x \mapsto a]$ denotes the syntactic replacement of every occurrence of x by a in A .

Example 9.3

Proof of $\{A\} y := 1; c \{B\}$ where

$$\begin{aligned}c &:= (\text{while } \neg(x=1) \text{ do } (y := y * x; x := x - 1)) \\A &:= (x = i) \\B &:= (y = i!)\end{aligned}$$

(on the board)

Structure of the proof:

$$\frac{\frac{\frac{\frac{4}{\quad} \frac{5}{\quad} (\text{asgn}) \frac{6}{\quad} (\text{cons})}{2} \quad \frac{7}{\quad} \frac{\frac{11}{\quad} \frac{12}{\quad} (\text{seq}) \frac{13}{\quad} (\text{cons})}{10} \quad \frac{8}{\quad} \frac{3}{\quad} (\text{while}) \frac{9}{\quad} (\text{cons})}{1} \quad (\text{seq})}{1}$$

Example 9.3 (continued)

Here the single propositions are given by:

- ① $\{A\} y := 1; c \{B\}$
- ② $\{A\} y := 1 \{C\}$
- ③ $\{C\} c \{B\}$
- ④ $\models (A \implies C[y \mapsto 1])$
- ⑤ $\{C[y \mapsto 1]\} y := 1 \{C\}$
- ⑥ $\models (C \implies C)$
- ⑦ $\models (C \implies C)$
- ⑧ $\{C\} c \{\neg(\neg(x = 1)) \wedge C\}$
- ⑨ $\models (\neg(\neg(x = 1)) \wedge C \implies B)$
- ⑩ $\{\neg(x = 1) \wedge C\} y := y*x; x := x-1 \{C\}$
- ⑪ $\models (\neg(x = 1) \wedge C \implies C[x \mapsto x-1, y \mapsto y*x])$
- ⑫ $\{C[x \mapsto x-1, y \mapsto y*x]\} y := y*x; x := x-1 \{C\}$
- ⑬ $\models (C \implies C)$
- ⑭ $\{C[x \mapsto x-1, y \mapsto y*x]\} y := y*x \{C[x \mapsto x-1]\}$
- ⑮ $\{C[x \mapsto x-1]\} x := x-1 \{C\}$

- 1 Repetition: Assertions and Partial Correctness Properties
- 2 A Valid Partial Correctness Property
- 3 Proof Rules for Partial Correctness
- 4 Soundness of Hoare Logic

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 9.4 (Substitution lemma)

For every $A \in Assn$, $x \in Var$, $a \in AExp$, $\sigma \in \Sigma$, and $I \in Int$:

$$\sigma \models^I A[x \mapsto a] \iff \sigma[x \mapsto \mathfrak{A}[a]\sigma] \models^I A.$$

Proof.

by induction over $A \in Assn$ (omitted)

Theorem 9.5 (Soundness of Hoare Logic)

For every partial correctness property $\{A\} c \{B\}$,

$$\vdash \{A\} c \{B\} \implies \models \{A\} c \{B\}.$$

Proof.

Let $\vdash \{A\} c \{B\}$. By induction over the structure of the corresponding proof tree we show that, for every $\sigma \in \Sigma$ and $I \in \text{Int}$ such that $\sigma \models^I A$, $\mathfrak{C}[c]\sigma \models^I B$ (on the board).

(If $\sigma = \perp$, then $\mathfrak{C}[c]\sigma = \perp \models^I B$ holds trivially.)

□