Semantics and Verification of Software

Lecture 1: Introduction

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Preliminaries

Rm mantics and Verification of Software nter sem

@ Lectures: Thomas Noll

o Lehrstuhl fiir Informatik 2, Room 4211
o E-mail noll@cs.rwth-aachen.de

o Phone (0241)80-21213
@ Exercise classes:

o Tingting Han (tingting.han@cs.rwth-aachen.de)
o Alexandru Mereacre (mereacre@cs.rwth-aachen.de)

@ Student assistants:

¢ Johanna Nellen (johanna.nellen@rwth-aachen.de)
o Maximilian Odenbrett (maximilian.odenbrett@rwth-aachen.de)

Rm Semantics and Verification of Software Winter semester 2008/09

noll@cs.rwth-aachen.de
tingting.han@cs.rwth-aachen.de
mereacre@cs.rwth-aachen.de
johanna.nellen@rwth-aachen.de
maximilian.odenbrett@rwth-aachen.de

Target Audience

@ Diploma programme (Informatik)
o Theoretische Informatik
o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung
@ Master programme (Software Systems Engineering)
o Theoretical CS
o Specialization Formal Methods, Programming Languages and
Software Validation

Rm Semantics and Verification of Software Winter semester 2008/09

Target Audience

@ Diploma programme (Informatik)
o Theoretische Informatik
o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung
@ Master programme (Software Systems Engineering)
o Theoretical CS
o Specialization Formal Methods, Programming Languages and
Software Validation
@ In general:
o interest in formal models for programming languages
o application of mathematical reasoning methods
o Expected: basic knowledge in
e essential concepts of imperative programming languages
o formal languages and automata theory
e mathematical logic

Rm Semantics and Verification of Software Winter semester 2008/09

Organization

Schedule:
o Lecture Mon 11:45-13:15 AH 2 (starting October 20)
o Lecture Thu 13:30-15:00 AH 1
(starting October 16; not Oct. 30/Nov. 27)
o Exercise class Mon 13:30-15:00 AH 2 (starting October 27)

1st assignment sheet: next Monday

©

Work on assignments in groups of three
Examination (8 ECTS credit points):

¢ written or oral (depending on number of candidates)
o if written: beginning of February

©

Admission requires at least 50% of the points in the exercises

©

Solutions to exercises and exam in English or German

Rm Semantics and Verification of Software Winter semester 2008/09

© Introduction

Rm mantics and Verification of Software nter sem

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
= Compiler Construction

Semantics: “What does this program mean?”
(execution evokes state transformations of an [abstract]

machine)
Pragmatics: @ length and understandability of programs
@ learnability of programming language
@ appropriateness for specific applications, ...
= Software Engineering

Rm Semantics and Verification of Software Winter semester 2008/09

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
= Compiler Construction
Semantics: “What does this program mean?”
(execution evokes state transformations of an [abstract]
machine)
Pragmatics: @ length and understandability of programs
@ learnability of programming language
@ appropriateness for specific applications, ...
= Software Engineering

Historic development:
@ Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler /interpreter
@ Formal semantics since 1970s
(operational/denotational /axiomatic)

Rm Semantics and Verification of Software Winter semester 2008/09

Motivation for Rigorous Formal Treatment I

@ How often will the following loop be traversed?
for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

Semantics and Verification of Software Winter semester 2008/09 8

Motivation for Rigorous Formal Treatment I

@ How often will the following loop be traversed?
for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

© What if p = nil in the following program?
while p <> nil and p~.key < val do ...

Pascal: strict boolean operations 4
Modula: non-strict boolean operations o

Semantics and Verification of Software Winter semester 2008/09 8

Motivation for Rigorous Formal Treatment II

@ Support for development of
@ new programming languages: missing details, ambiguities and
inconsistencies can be recognized
e compilers: automatic compiler generation from appropriately
defined semantics
e programs: exact understanding of semantics avoids uncertainties in
the implementation of algorithms

Rm Semantics and Verification of Software Winter semester 2008/09

Motivation for Rigorous Formal Treatment II

@ Support for development of
@ new programming languages: missing details, ambiguities and
inconsistencies can be recognized
e compilers: automatic compiler generation from appropriately
defined semantics
e programs: exact understanding of semantics avoids uncertainties in
the implementation of algorithms
@ Support for correctness proofs of
e programs: comparison of program semantics with desired behaviour
(e.g., termination properties)
e compilers:

. compiler .
programming language — machine code
semantics | | (simple) semantics
. ? .
meaning = meaning

@ optimizing transformations:

optimization
code — code
semantics | | semantics
. ? .
meaning = meaning

Rm Semantics and fication of Software Winter semester 2008

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Rm Semantics and Verification of Software Winter semester 2008/09 10

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Denotational semantics: mathematical definition of input/output

relation of the program by induction on its syntactic
structure (D. Scott, C. Strachey)

Rm Semantics and Verification of Software Winter semester 2008/09 10

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Denotational semantics: mathematical definition of input/output

relation of the program by induction on its syntactic
structure (D. Scott, C. Strachey)

Axiomatic semantics: formalization of special properties of the
program by logical formulae (assertions and proof rules;
R. Floyd, T. Hoare)

Rm Semantics and Verification of Software Winter semester 2008/09 10

Overview of the Course

© The imperative model language WHILE

© Operational semantics of WHILE

© Denotational semantics of WHILE

@ Equivalence of operational and denotational semantics
© Axiomatic semantics of WHILE

@ Dataflow analysis

© Extensions: procedures and dynamic data structures

Rm Semantics and Verification of Software Winter semester 2008/09

(also see the collection [“Handapparat”] at the CS Library)

o Formal semantics:
o G. Winskel: The Formal Semantics of Programming Languages,
The MIT Press, 1996
¢ H.R. Nielson, F. Nielson: Semantics with Applications: A Formal
Introduction, Wiley, 1992
e E. Fehr: Semantik von Programmiersprachen, Springer, 1989
@ Dataflow analysis:
o F. Nielson, H.R. Nielson, C. Hankin: Principles of Program
Analysis, 2nd ed., Springer, 2005

Rm Semantics and Verification of Software Winter semester 2008/09 12

© The Imperative Model Language WHILE

Rm Semantics and fication of Software Winter semester 2008

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Rm Semantics and Verification of Software Winter semester 2008/09 14

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,-1,...} =z
Truth values B = {true, false} ¢
Variables Var = {x,y,...} =
Arithmetic expressions AFEzp a
Boolean expressions BExp b
Commands (statements) Cmd c

Rm Semantics and Verification of Software Winter semester 2008/09 14

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a:=z|x|ai+as | ai-as | aj*as € AExp
b 5= 1 | ar=ag | a1>ag | —b | by A by | b1 V by € BExp
cu=skip|x :=a|cy;co | if b then ¢; else ¢ | while b do ¢ € Cmd

v

m' Semantics and Verification of Software Winter semester 2008/09 15

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a:=z|x|ai+as | ai-as | aj*as € AExp
b 5= 1 | ar=ag | a1>ag | —b | by A by | b1 V by € BExp
cu=skip|x :=a|cy;co | if b then ¢; else ¢ | while b do ¢ € Cmd

v

Remarks: we assume that

o the syntax of numbers, truth values and variables is given
(i.e., no “lexical analysis”)

@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

m Semantics and Verification of Software Winter semester 2008/09 15

A WHILE Program

X := 6;
y :=7;
z := 0;

while x > 0 do
X :=x - 1;
vV =y,
while v > 0 do
v :=v - 1;
z =z + 1

Semantics and Verification of Software Winter semester 2008/09 16

A WHILE Program and its Flow Diagram

X := 6;
y :=7;
z := 0;

while x > 0 do
X :=x - 1;
vV =y,
while v > 0 d
v :=v - 1;
z =z + 1

m Semantics and Verification of Software Winter semester 2008/09 16

A WHILE Program and its Flow Diagram

X := 6;
Y 5= 75
z := 0;
while x > 0 do
X :=x - 1;
vV =y,
while v > 0 d
v :=v - 1;
z =z + 1

Effect: z := x x y = 42

m Semantics and Verification of Software Winter semester 2008/09 16

	Preliminaries
	Introduction
	The Imperative Model Language WHILE

