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Partial Correctness Properties

Definition (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B

(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ BI).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ BI).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int .
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Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by
(skip) {A} skip {A} (asgn) {A[x 7→ a]}x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}

{A} c1;c2 {B} (if)
{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ⊢ {A} c {B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of
x by a in A.
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Soundness of Hoare Logic

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
⊢ {A} c {B} =⇒ |= {A} c {B}.

Proof.

Let ⊢ {A} c {B}. By induction over the structure of the corresponding
proof tree we show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A,
CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable
√

Completeness: all valid partial correctness properties are
systematically derivable  

Theorem 11.1 (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}

is not recursively enumerable, i.e., there exists no proof system for
Assn in which all valid assertions are systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]
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Incompleteness of Hoare Logic II

Corollary 11.2

There is no proof system in which all valid partial correctness
properties can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.
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Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

=⇒ Relative completeness
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Relative Completeness of Hoare Logic I

Theorem 11.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness
property {A} c {B}:

|= {A} c {B} =⇒ ⊢ {A} c {B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1;c2 {B}
has to be derived. This requires an intermediate assertion C ∈ Assn
such that {A} c1 {C} and {C} c2 {B}. How to find it?
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Weakest Preconditions I

Definition 11.4 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 11.5

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpIJc,BK

2 If A0 ∈ Assn such that AI
0 = wpIJc,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A =⇒ A0)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A} c {B} valid
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Weakest Preconditions II

Definition 11.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists Ac,B ∈ Assn such that

AI
c,B = wpIJc, BK

for every I ∈ Int .

Theorem 11.7 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given c ∈ Cmd and B ∈ Assn, construct Ac,B ∈ Assn with
σ |=I Ac,B ⇐⇒ CJcKσ |=I B (for every σ ∈ Σ⊥, I ∈ Int). For example:

Askip,B := B Ax:=a,B := B[x 7→ a]
Ac1;c2,B := Ac1,Ac2,B

. . .

(for while: “Gödelization” of sequences of intermediate states)
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Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 11.8

For every c ∈ Cmd and B ∈ Assn:
⊢ {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 11.3).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ⊢ {A} c {B}.

Lemma 11.8 =⇒ ⊢ {Ac,B} c {B}
Cor. 11.5 =⇒ |= (A =⇒ Ac,B)
(cons) rule =⇒ ⊢ {A} c {B}
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Operational/Denotational Equivalence

Def. 4.1: OJ.K : Cmd → (Σ 99K Σ) given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Def. 4.2: Two statements c1, c2 ∈ Cmd are called operationally
equivalent (notation: c1 ∼ c2) if

OJc1K = OJc2K.

Theorem 8.1: For every c ∈ Cmd ,

OJcK = CJcK,

i.e., OJ.K = CJ.K.
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Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.9 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation:
c1 ≈ c2) if, for all assertions A, B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Example 11.10

We show that c1;(c2;c3) ≈ (c1;c2);c3. Let A, B ∈ Assn:
|= {A} c1;(c2;c3) {B}

⇐⇒ ⊢ {A} c1;(c2;c3) {B} (Theorem 10.2, 11.3)
⇐⇒ ex. C1 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2;c3 {B} (rule (seq))
⇐⇒ ex. C1, C2 ∈ Assn such that ⊢ {A} c1 {C1},⊢ {C1} c2 {C2},

⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ex. C2 ∈ Assn such that ⊢ {A} c1;c2 {C2},⊢ {C2} c3 {B} (rule (seq))
⇐⇒ ⊢ {A} (c1;c2);c3 {B} (rule (seq))
⇐⇒ |= {A} (c1;c2);c3 {B} (Theorem 10.2, 11.3)
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Axiomatic Equivalence II

Theorem 11.11

Axiomatic and denotational/operational equivalence coincide, i.e., for
all c1, c2 ∈ Cmd,

c1 ≈ c2 ⇐⇒ c1 ∼ c2.

Proof.

on the board
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