Semantics and Verification of Software

Lecture 11: Axiomatic Semantics of WHILE III
(Completeness and Equivalence)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Repetition: Correctness of Hoare Logic

Rm Semantics and Verification of Software ter semester 2008

Partial Correctness Properties

Definition (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [€ Int, we let

o T {A} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: o € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € ¥ (or equivalently: €[c]JA! C BY).
o {A}c{B} is called valid (notation: |= {A}c{B}) if ! {A}c{B}
for every I € Int.

m' Semantics and Verification of Software Winter semester 2008,/09 3

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by

P Ay sxip (4) S Al aly 2:=a (4]
(s04) {A}Cl {C}{C} 2 {B} {ANb}e1{B} {AA-b}e2{B}
d {A}c1;¢2{B} {A}if b then ¢; else ¢ {B}
(while) {Anb}e{A}

{A}while b do c{A A —b}
FA = A){4}c{B} (B = B)
{A}c{B}

A partial correctness property is provable (notation: - {4} c{B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(cons)

v

Here A[x +— a] denotes the syntactic replacement of every occurrence of
z by a in A.
RWNTH

Semantics and Verification of Software Winter semester 2008,/09 4

Soundness of Hoare Logic

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c{B},

F{A}c{B} = |={A}c{B}.

Let - {A} ¢{B}. By induction over the structure of the corresponding
proof tree we show that, for every o € ¥ and I € Int such that o =1 A,
€[cJo E! B (on the board).

(If o = L, then €[cJo = L =! B holds trivially.) O

m Semantics and Verification of Software Winter semester 2008,/09 5

© (In-)Completeness of Hoare Logic

Rm Semantics and Verification of Software ter semester 2008

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable v

Completeness: all valid partial correctness properties are
systematically derivable %

Theorem 11.1 (Godel’s Incompleteness Theorem)

The set of all valid assertions
{A € Assn | E A}

s not recursively enumerable, i.e., there exists no proof system for
Assn in which all valid assertions are systematically derivable.

see [Winskel 1996, p. 110 ff]

m Semantics and Verification of Software Winter semester 2008,/09

Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.

Given A € Assn, = A is obviously equivalent to {true} skip{A4}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.]

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff ¢ does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.

m Semantics and Verification of Software Winter semester 2008,/09 8

Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A){A}e{B'} |E (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

® The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a

given assertion is valid, then all valid partial correctness properties
can be systematically derived

—> Relative completeness

Rm Semantics and Verification of Software Winter semester 2008,/09 9

Relative Completeness of Hoare Logic I

Theorem 11.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness
property {A} c{B}:

= {A}c{B} =+ {A}c{B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {4} c1;c2{B}
has to be derived. This requires an intermediate assertion C' € Assn
such that {A} ¢; {C} and {C} c2 {B}. How to find it?

m' Semantics and Verification of Software Winter semester 2008,/09 10

Weakest Preconditions I

Definition 11.4 (Weakest precondition)

Given ¢ € OUmd, B € Assn and I € Int, the weakest precondition of B
with respect to ¢ under I is defined by:

wp’[e, B] := {0 € ¥ | ¢[]o E! B}.

Corollary 11.5

For every c € Cmd, A, B € Assn, and I € Int:
Q@ ! {A}c{B} — Al Cwpl[c, B]
Q If Ay € Assn such that AL = wp![e, B] for every I € Int, then
F{A}c{B} <= EF (4 = A

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A}c{B} valid

m' Semantics and Verification of Software Winter semester 2008,/09 11

Weakest Preconditions 11

Definition 11.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists A. g € Assn such that

Al g = wp'[c, B]
for every I € Int.

Theorem 11.7 (Expressivity of Assn)

Assn is expressive.

Proof

(idea; see [Winskel 1996, p. 103 ff for details])
Given ¢ € OUmd and B € Assn, construct A. p € Assn with
ol Acp < €[c]o B! B (for every 0 € X, I € Int). For example:

AgipB == B Ayi=a,B = Bz — d]
Acy; jco,B T APLACQ B
(for while: “Godelization” of sequences of 1ntermed1ate states) O

m' Semantics and Verification of Software Winter semester 2008,/09

Relative Completeness of Hoare Logic 11

The following lemma shows that weakest preconditions are “derivable”:

Lemma 11.8

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 11.3).

We have to show that Hoare Logic is relatively complete, i.e., that
={A}e{B} =+ {A}c{B}.
o Lemma 11.8 = F {A.p}c{B}

o Cor. 115 = (A = A.B)
o (cons) rule = F {A}c{B}

m' Semantics and Verification of Software Winter semester 2008,/09

© Equivalence of Axiomatic and Operational /Denotational Semantics

Rm Semantics and fication of Software Winter semester 2008

Operational /Denotational Equivalence

Def. 4.1: O[.] : Cmd — (X --» X) given by
Ole)(o) =0’ < (c,0) — o’
Def. 4.2: Two statements c1,co € Cmd are called operationally

equivalent (notation: ¢; ~ ¢g) if

D[[Cl]] = D[[CQ]].

Theorem 8.1: For every ¢ € Cmd,

Ol = ¢[¢],

ie., O[] = C[].

Rm Semantics and Verification of Software Winter semester 2008,/09

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if
they are indistinguishable w.r.t. partial correctness properties:

Definition 11.9 (Axiomatic equivalence)

Two statements c1, co € Cmd are called axiomatically equivalent (notation:
c1 & cg) if, for all assertions A, B € Assn,

F{A}a{B} < [{A}c{B}.

Example 11.10
We show that ¢1;(co;c3) = (c1;¢2);5¢3. Let A, B € Assn:

= {A}c1;(ca;e3) {B}

F{A}c1;(c25¢3) {B} (Theorem 10.2, 11.3)

ex. Cy € Assn such that F {4} c1 {C1},F {C1} c2;c3 {B} (rule (seq))
ex. 01,02 € Assn such that {A} Cc1 {Cl}, = {Cl} Co {CQ},

F {Cs} cs {B} (rule (seq))

ex. Cy € Assn such that F {A} c1;00 {Co}, - {Ca} c3 {B} (rule (seq))
F{A} (e1;¢2);¢3{B} (rule (seq))

A} (e1;¢2);e3{B} (Theorem 10.2, 11.3)

11 11y

Semantics and Verification of Software Winter semester 2008,/09 16

g !

Axiomatic Equivalence II

Aziomatic and denotational/operational equivalence coincide, i.e., for
all ¢1,c0 € Cmd,
Cl1 R Cy <= C1 ~ Cy.

on the board O

m' Semantics and Verification of Software Winter semester 2008,/09 17

	Repetition: Correctness of Hoare Logic
	(In-)Completeness of Hoare Logic
	Equivalence of Axiomatic and Operational/Denotational Semantics

