

Semantics and Verification of Software

Lecture 11: Axiomatic Semantics of WHILE III (Completeness and Equivalence)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw08/>

Winter semester 2008/09

- 1 Repetition: Correctness of Hoare Logic
- 2 (In-)Completeness of Hoare Logic
- 3 Equivalence of Axiomatic and Operational/Denotational Semantics

Definition (Partial correctness properties)

Let $A, B \in \text{Assn}$ and $c \in \text{Cmd}$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \implies \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in I** (notation: $\models^I \{A\} c \{B\}$) if $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$ for every $I \in \text{Int}$.

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The **Hoare rules** are given by

$$\begin{array}{c} \text{(skip)} \frac{}{\{A\} \text{ skip } \{A\}} \qquad \text{(asgn)} \frac{}{\{A[x \mapsto a]\} x := a \{A\}} \\ \text{(seq)} \frac{\{A\} c_1 \{C\} \{C\} c_2 \{B\}}{\{A\} c_1 ; c_2 \{B\}} \quad \text{(if)} \frac{\{A \wedge b\} c_1 \{B\} \{A \wedge \neg b\} c_2 \{B\}}{\{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{B\}} \\ \text{(while)} \frac{\{A \wedge b\} c \{A\}}{\{A\} \text{ while } b \text{ do } c \{A \wedge \neg b\}} \\ \text{(cons)} \frac{\models (A \implies A') \{A'\} c \{B'\} \models (B' \implies B)}{\{A\} c \{B\}} \end{array}$$

A partial correctness property is **provable** (notation: $\vdash \{A\} c \{B\}$) if it is derivable by the Hoare rules. In case of (while), A is called a **(loop) invariant**.

Here $A[x \mapsto a]$ denotes the syntactic replacement of every occurrence of x by a in A .

Theorem (Soundness of Hoare Logic)

For every partial correctness property $\{A\} c \{B\}$,
 $\vdash \{A\} c \{B\} \implies \models \{A\} c \{B\}.$

Proof.

Let $\vdash \{A\} c \{B\}$. By induction over the structure of the corresponding proof tree we show that, for every $\sigma \in \Sigma$ and $I \in \text{Int}$ such that $\sigma \models^I A$, $\mathfrak{C}[c]\sigma \models^I B$ (on the board).

(If $\sigma = \perp$, then $\mathfrak{C}[c]\sigma = \perp \models^I B$ holds trivially.)

□

- 1 Repetition: Correctness of Hoare Logic
- 2 (In-)Completeness of Hoare Logic
- 3 Equivalence of Axiomatic and Operational/Denotational Semantics

Soundness: only valid partial correctness properties are provable ✓

Completeness: all valid partial correctness properties are systematically derivable ↗

Theorem 11.1 (Gödel's Incompleteness Theorem)

The set of all valid assertions

$$\{A \in \text{Assn} \mid \models A\}$$

is not recursively enumerable, i.e., there exists no proof system for Assn in which all valid assertions are systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]

Corollary 11.2

There is no proof system in which all valid partial correctness properties can be enumerated.

Proof.

Given $A \in Assn$, $\models A$ is obviously equivalent to $\{\text{true}\} \text{skip} \{A\}$. Thus the enumerability of all valid partial correctness properties would imply the enumerability of all valid assertions. □

Remark: alternative proof (using computability theory):
 $\{\text{true}\} c \{\text{false}\}$ is valid iff c does not terminate on any input state. But the set of all non-terminating WHILE statements is not enumerable.

- We will see: actual reason of incompleteness is rule

$$\text{(cons)} \frac{\models (A \implies A') \{A'\} c \{B'\} \models (B' \implies B)}{\{A\} c \{B\}}$$

since it is based on the **validity of implications** within *Assn*

- The other language constructs are “enumerable”
- Therefore: **separation** of proof system (Hoare Logic) and assertion language (*Assn*)
- One can show: if an “oracle” is available which decides whether a given assertion is valid, then all valid partial correctness properties can be systematically derived

⇒ **Relative completeness**

Theorem 11.3 (Cook's Completeness Theorem)

*Hoare Logic is **relatively complete**, i.e., for every partial correctness property $\{A\} c \{B\}$:*

$$\models \{A\} c \{B\} \implies \vdash \{A\} c \{B\}.$$

Thus: if we know that a partial correctness property is valid, then we know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., $\{A\} c_1 ; c_2 \{B\}$ has to be derived. This requires an **intermediate assertion** $C \in Assn$ such that $\{A\} c_1 \{C\}$ and $\{C\} c_2 \{B\}$. How to find it?

Definition 11.4 (Weakest precondition)

Given $c \in Cmd$, $B \in Assn$ and $I \in Int$, the **weakest precondition** of B with respect to c under I is defined by:

$$wp^I \llbracket c, B \rrbracket := \{ \sigma \in \Sigma_{\perp} \mid \mathfrak{C} \llbracket c \rrbracket \sigma \models^I B \}.$$

Corollary 11.5

For every $c \in Cmd$, $A, B \in Assn$, and $I \in Int$:

- ① $\models^I \{A\} c \{B\} \iff A^I \subseteq wp^I \llbracket c, B \rrbracket$
- ② If $A_0 \in Assn$ such that $A_0^I = wp^I \llbracket c, B \rrbracket$ for every $I \in Int$, then
 $\models \{A\} c \{B\} \iff \models (A \implies A_0)$

Remark: (2) justifies the notion of **weakest** precondition: it is implied by every precondition A which makes $\{A\} c \{B\}$ valid

Definition 11.6 (Expressivity of assertion languages)

An assertion language $Assn$ is called **expressive** if, for every $c \in Cmd$ and $B \in Assn$, there exists $A_{c,B} \in Assn$ such that

$$A_{c,B}^I = wp^I \llbracket c, B \rrbracket$$

for every $I \in Int$.

Theorem 11.7 (Expressivity of $Assn$)

$Assn$ is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])

Given $c \in Cmd$ and $B \in Assn$, construct $A_{c,B} \in Assn$ with
 $\sigma \models^I A_{c,B} \iff \mathfrak{C} \llbracket c \rrbracket \sigma \models^I B$ (for every $\sigma \in \Sigma_\perp$, $I \in Int$). For example:

$$\begin{array}{ll} A_{\text{skip},B} := B & A_{x:=a,B} := B[x \mapsto a] \\ A_{c_1;c_2,B} := A_{c_1,A_{c_2,B}} & \dots \end{array}$$

(for **while**: “Gödelization” of sequences of intermediate states)

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 11.8

For every $c \in \text{Cmd}$ and $B \in \text{Assn}$:

$$\vdash \{A_{c,B}\} c \{B\}$$

Proof.

by structural induction over c (omitted) □

Proof (Cook’s Completeness Theorem 11.3).

We have to show that Hoare Logic is relatively complete, i.e., that

$$\models \{A\} c \{B\} \implies \vdash \{A\} c \{B\}.$$

- Lemma 11.8 $\implies \vdash \{A_{c,B}\} c \{B\}$
- Cor. 11.5 $\implies \models (A \implies A_{c,B})$
- (cons) rule $\implies \vdash \{A\} c \{B\}$

- 1 Repetition: Correctness of Hoare Logic
- 2 (In-)Completeness of Hoare Logic
- 3 Equivalence of Axiomatic and Operational/Denotational Semantics

Def. 4.1: $\mathfrak{O}[\![\cdot]\!]: Cmd \rightarrow (\Sigma \dashrightarrow \Sigma)$ given by

$$\mathfrak{O}[\![c]\!](\sigma) = \sigma' \iff \langle c, \sigma \rangle \rightarrow \sigma'$$

Def. 4.2: Two statements $c_1, c_2 \in Cmd$ are called **operationally equivalent** (notation: $c_1 \sim c_2$) if

$$\mathfrak{O}[\![c_1]\!] = \mathfrak{O}[\![c_2]\!].$$

Theorem 8.1: For every $c \in Cmd$,

$$\mathfrak{O}[\![c]\!] = \mathfrak{C}[\![c]\!],$$

i.e., $\mathfrak{O}[\![\cdot]\!] = \mathfrak{C}[\![\cdot]\!]$.

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if they are **indistinguishable** w.r.t. partial correctness properties:

Definition 11.9 (Axiomatic equivalence)

Two statements $c_1, c_2 \in Cmd$ are called **axiomatically equivalent** (notation: $c_1 \approx c_2$) if, for all assertions $A, B \in Assn$,

$$\models \{A\} c_1 \{B\} \iff \models \{A\} c_2 \{B\}.$$

Example 11.10

We show that $c_1 ; (c_2 ; c_3) \approx (c_1 ; c_2) ; c_3$. Let $A, B \in Assn$:

$$\begin{aligned} & \models \{A\} c_1 ; (c_2 ; c_3) \{B\} \\ \iff & \vdash \{A\} c_1 ; (c_2 ; c_3) \{B\} \text{ (Theorem 10.2, 11.3)} \\ \iff & \text{ex. } C_1 \in Assn \text{ such that } \vdash \{A\} c_1 \{C_1\}, \vdash \{C_1\} c_2 ; c_3 \{B\} \text{ (rule (seq))} \\ \iff & \text{ex. } C_1, C_2 \in Assn \text{ such that } \vdash \{A\} c_1 \{C_1\}, \vdash \{C_1\} c_2 \{C_2\}, \\ & \quad \vdash \{C_2\} c_3 \{B\} \text{ (rule (seq))} \\ \iff & \text{ex. } C_2 \in Assn \text{ such that } \vdash \{A\} c_1 ; c_2 \{C_2\}, \vdash \{C_2\} c_3 \{B\} \text{ (rule (seq))} \\ \iff & \vdash \{A\} (c_1 ; c_2) ; c_3 \{B\} \text{ (rule (seq))} \\ \iff & \models \{A\} (c_1 ; c_2) ; c_3 \{B\} \text{ (Theorem 10.2, 11.3)} \end{aligned}$$

Theorem 11.11

Axiomatic and denotational/operational equivalence coincide, i.e., for all $c_1, c_2 \in Cmd$,

$$c_1 \approx c_2 \iff c_1 \sim c_2.$$

Proof.

on the board

