
Semantics and Verification of Software
Lecture 12: Axiomatic Semantics of WHILE IV

(Total Correctness)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Repetition: Axiomatic Equivalence

2 Total Correctness

3 Soundness and Completeness

4 Summary: Axiomatic Semantics

Semantics and Verification of Software Winter semester 2008/09 2

Operational/Denotational Equivalence

Def. 4.1: OJ.K : Cmd → (Σ 99K Σ) given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Def. 4.2: Two statements c1, c2 ∈ Cmd are called operationally
equivalent (notation: c1 ∼ c2) if

OJc1K = OJc2K.

Theorem 8.1: For every c ∈ Cmd ,

OJcK = CJcK,

i.e., OJ.K = CJ.K.

Semantics and Verification of Software Winter semester 2008/09 3

Axiomatic Equivalence

In the axiomatic semantics, two statements have to be considered
equivalent if they are indistinguishable w.r.t. partial correctness
properties:

Definition (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent
(notation: c1 ≈ c2) if, for all assertions A,B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Theorem

Axiomatic and denotational/operational equivalence coincide, i.e., for
all c1, c2 ∈ Cmd,

c1 ≈ c2 ⇐⇒ c1 ∼ c2.

Proof.

on the board

Semantics and Verification of Software Winter semester 2008/09 4

Outline

1 Repetition: Axiomatic Equivalence

2 Total Correctness

3 Soundness and Completeness

4 Summary: Axiomatic Semantics

Semantics and Verification of Software Winter semester 2008/09 5

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Semantics and Verification of Software Winter semester 2008/09 6

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

Semantics and Verification of Software Winter semester 2008/09 6

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

Semantics and Verification of Software Winter semester 2008/09 6

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

Interpretation:

Validity of property {A} c {⇓B}

For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

Semantics and Verification of Software Winter semester 2008/09 6

Semantics of Total Correctness Properties

Definition 12.1 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

Semantics and Verification of Software Winter semester 2008/09 7

Semantics of Total Correctness Properties

Definition 12.1 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

Semantics and Verification of Software Winter semester 2008/09 7

Semantics of Total Correctness Properties

Definition 12.1 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

{A} c {⇓B} is called valid (notation: |= {A} c {B}) if
|=I {A} c {⇓B} for every I ∈ Int .

Semantics and Verification of Software Winter semester 2008/09 7

Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 12.2 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)
{A} skip{⇓A}

(asgn)
{A[x 7→ a]} x := a {⇓A}

(seq)
{A} c1 {⇓C} {C} c2 {⇓B}

{A} c1;c2 {⇓B}
(if)

{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}

{A} if b then c1 else c2 {⇓B}

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

(cons)
|= (A =⇒ A′) {A′} c {⇓B′} |= (B′ =⇒ B)

{A} c {⇓B}

where i ∈ LVar , |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and |= (A(0) =⇒ ¬b).
A total correctness property is provable (notation: ⊢ {A} c {⇓B}) if it is
derivable by the Hoare rules. In case of (while), A(i) is called a (loop)
invariant.

Semantics and Verification of Software Winter semester 2008/09 8

Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Semantics and Verification of Software Winter semester 2008/09 9

Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Semantics and Verification of Software Winter semester 2008/09 9

Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Execution terminated
=⇒ A(0) holds
=⇒ execution condition b false

Thus: |= (A(0) =⇒ ¬b)

Semantics and Verification of Software Winter semester 2008/09 9

Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Execution terminated
=⇒ A(0) holds
=⇒ execution condition b false

Thus: |= (A(0) =⇒ ¬b)

Loop to be traversed i + 1 times (i ≥ 0)
=⇒ A(i + 1) holds
=⇒ execution condition b true

Thus: |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and i + 1 decreased to i after
execution of c

Semantics and Verification of Software Winter semester 2008/09 9

Total Correctness of Factorial Program

Example 12.3

Proof of {A} y:=1;c {⇓B} where

A := (x > 0 ∧ x = i)
c := while ¬(x=1) do (y:=y*x; x:=x-1)

B := (y = i!)

(on the board)

Semantics and Verification of Software Winter semester 2008/09 10

Outline

1 Repetition: Axiomatic Equivalence

2 Total Correctness

3 Soundness and Completeness

4 Summary: Axiomatic Semantics

Semantics and Verification of Software Winter semester 2008/09 11

Soundness

In analogy to Theorem 11.3 we can show that the Hoare Logic for total
correctness properties is also sound:

Theorem 12.4 (Soundness)

For every total correctness property {A} c {⇓B},

⊢ {A} c {⇓B} =⇒ |= {A} c {⇓B}.

Semantics and Verification of Software Winter semester 2008/09 12

Soundness

In analogy to Theorem 11.3 we can show that the Hoare Logic for total
correctness properties is also sound:

Theorem 12.4 (Soundness)

For every total correctness property {A} c {⇓B},

⊢ {A} c {⇓B} =⇒ |= {A} c {⇓B}.

Proof.

again by structural induction over the derivation tree of ⊢ {A} c {⇓B}
(only (while) case; on the board)

Semantics and Verification of Software Winter semester 2008/09 12

Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 11.3 applies:

Theorem 12.5 (Completeness)

The Hoare Logic for total correctness properties is relatively complete,
i.e., for every {A} c {⇓B}:

|= {A} c {⇓B} =⇒ ⊢ {A} c {⇓B}.

Proof.

omitted

Semantics and Verification of Software Winter semester 2008/09 13

Outline

1 Repetition: Axiomatic Equivalence

2 Total Correctness

3 Soundness and Completeness

4 Summary: Axiomatic Semantics

Semantics and Verification of Software Winter semester 2008/09 14

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Semantics and Verification of Software Winter semester 2008/09 15

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Semantics and Verification of Software Winter semester 2008/09 15

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
=⇒ machine support (proof assistants) indispensable for larger
programs

Semantics and Verification of Software Winter semester 2008/09 15

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
=⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Semantics and Verification of Software Winter semester 2008/09 15

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
=⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Software engineering aspect: integrated development of program
and proof (cf. assertions in Java)

Semantics and Verification of Software Winter semester 2008/09 15

	Repetition: Axiomatic Equivalence
	Total Correctness
	Soundness and Completeness
	Summary: Axiomatic Semantics

