Semantics and Verification of Software

Lecture 12: Axiomatic Semantics of WHILE IV
(Total Correctness)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Repetition: Axiomatic Equivalence

Rm Semantics and Verification of Software ter semester 2008



Operational /Denotational Equivalence

Def. 4.1: O[.] : Cmd — (X --» X) given by
Olc](o) =0’ < (c,0) =o'

Def. 4.2: Two statements c1,co € Cmd are called operationally
equivalent (notation: c¢; ~ ¢g) if

D[[Cl]] = D[[CQ]].
Theorem 8.1: For every ¢ € Cmd,

Ol = ¢[¢],

ie., O[] = e[].

Rm Semantics and Verification of Software Winter semester 2008,/09



Axiomatic Equivalence

In the axiomatic semantics, two statements have to be considered
equivalent if they are indistinguishable w.r.t. partial correctness
properties:

Definition (Axiomatic equivalence)

Two statements c1,co € COmd are called axiomatically equivalent
(notation: ¢; & c9) if, for all assertions A, B € Assn,

F{A}a {B} < {A}{B}.

Aziomatic and denotational/operational equivalence coincide, i.e., for
all ¢1,c0 € Cmd,

Cl1 R Cy <= C1 ~ Cy.

on the board O

m' Semantics and Verification of Software Winter semester 2008,/09




© Total Correctness

Rm Semantics and Verification of Software ter semester 2008



Total Correctness

@ Observation: partial correctness properties only speak about
terminating computations of a given program

o Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

o Consider total correctness properties of the form
{A}c{U B}

where ¢ € Cmd and A, B € Assn

o Interpretation:

Validity of property {A}c{{ B}

For all states 0 € ¥ which satisfy A:
the execution of ¢ in o terminates and yields a state which satisfies B.

m' Semantics and Verification of Software Winter semester 2008,/09 6



Semantics of Total Correctness Properties

Definition 12.1 (Semantics of total correctness properties)

Let A, B € Assn and ¢ € Omd.

o {A}c{| B} is called valid in 0 € ¥ and I € Int (notation:
o = {AYc{UB}) if 0 ! A implies that €[c]o # L and
¢lcJo = B.

o {A}c{U B} is called valid in I € Int (notation: = {A}c{ B}) if
o = {A} c{| B} for every o € ¥.

o {A}c{| B} is called valid (notation: = {A}c{B}) if
=1 {A} ¢ {§ B} for every I € Int.

m Semantics and Verification of Software Winter semester 2008,/09 7



Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 12.2 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)

{AT skip (4 4] 8 T ol o = o (04}

(Ao UCHCh o (U8} {ANBbe (B} AN B o (U5}
{A} 1500 {I B} {A} if b then ¢; else ¢ {| B}
{i>0NAGE+ 1)} c{JAG)}

{3i.i > 0A A(i)} while b do c{{ A(0)}

FA = A){A}c{{B}E (B — B)

{A} {4 B}
where i € LVar, = (1 > 0N A(i +1) = b), and = (A(0) = —b).
A total correctness property is provable (notation: - {A} ¢ {{ B}) if it is

derivable by the Hoare rules. In case of (while), A(7) is called a (loop)
invariant.

(seq)

(while)

(cons)

m' Semantics and Verification of Software Winter semester 2008,/09



Proving Total Correctness 11

o In rule
{i>0NA@G+1)}e{JA®G)}

(i) 15,5 > 0 A A(3)} while b do ¢ {J A(0))

the notation A(7) indicates that assertion A parametrically
depends on the value of the logical variable ¢ € LVar.
o Idea: ¢ represents the remaining number of loop iterations
o Execution terminated
—> A(0) holds
— execution condition b false
Thus: = (A(0) = —b)
@ Loop to be traversed i + 1 times (i > 0)
—> A(i+ 1) holds
—> execution condition b true

Thus: = (i >0AA(i+1) = b), and i + 1 decreased to i after
execution of ¢

m' Semantics and Verification of Software Winter semester 2008,/09 9



Total Correctness of Factorial Program

Example 12.3

Proof of {A}y:=1;c{{ B} where

A:=x>0Ax=1)
while —(x=1) do (y:=y*x; x:=x-1)
y =)

c:
B :

(on the board)

Semantics and Verification of Software Winter semester 2008,/09 10



© Soundness and Completeness

Rm Semantics and Verification of Software ter semester 2008



Soundness

In analogy to Theorem 11.3 we can show that the Hoare Logic for total
correctness properties is also sound:

For every total correctness property {A} c{{ B},

F{A}c{UB} = = {A}c{{B}.

again by structural induction over the derivation tree of - {A} ¢ {{ B}
(only (while) case; on the board) O

m Semantics and Verification of Software Winter semester 2008,/09 12



Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 11.3 applies:

Theorem 12.5 (Completeness)

The Hoare Logic for total correctness properties is relatively complete,
i.e., for every {A} c{| B}:

F{A}c{ B} = {A}c{UB}.

omitted

m' Semantics and Verification of Software Winter semester 2008,/09 13



@ Summary: Axiomatic Semantics

Rm Semantics and Verification of Software inter semester 2008



Summary: Axiomatic Semantics

e Formalized by partial/total correctness properties
@ Inductively defined by Hoare Logic proof rules

@ Technically involved (especially loop invariants)
—> machine support (proof assistants) indispensable for larger
programs

e Equivalence of axiomatic and operational /denotational semantics

@ Software engineering aspect: integrated development of program
and proof (cf. assertions in Java)

Rm Semantics and Verification of Software Winter semester 2008,/09 15



	Repetition: Axiomatic Equivalence
	Total Correctness
	Soundness and Completeness
	Summary: Axiomatic Semantics

