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Operational /Denotational Equivalence

Def. 4.1: O[.] : Cmd — (X --» X) given by
Olc](o) =0’ < (c,0) =o'

Def. 4.2: Two statements c1,co € Cmd are called operationally
equivalent (notation: c¢; ~ ¢g) if

D[[Cl]] = D[[CQ]].
Theorem 8.1: For every ¢ € Cmd,

Ol = ¢[¢],

ie., O[] = e[].
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Axiomatic Equivalence

In the axiomatic semantics, two statements have to be considered
equivalent if they are indistinguishable w.r.t. partial correctness
properties:

Definition (Axiomatic equivalence)

Two statements c1,co € COmd are called axiomatically equivalent
(notation: ¢; & c9) if, for all assertions A, B € Assn,

F{A}a {B} < {A}{B}.

Aziomatic and denotational/operational equivalence coincide, i.e., for
all ¢1,c0 € Cmd,

Cl1 R Cy <= C1 ~ Cy.

on the board O
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© Total Correctness
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Total Correctness

@ Observation: partial correctness properties only speak about
terminating computations of a given program

o Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

o Consider total correctness properties of the form
{A}c{U B}

where ¢ € Cmd and A, B € Assn

o Interpretation:

Validity of property {A}c{{ B}

For all states 0 € ¥ which satisfy A:
the execution of ¢ in o terminates and yields a state which satisfies B.
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Semantics of Total Correctness Properties

Definition 12.1 (Semantics of total correctness properties)

Let A, B € Assn and ¢ € Omd.

o {A}c{| B} is called valid in 0 € ¥ and I € Int (notation:
o = {AYc{UB}) if 0 ! A implies that €[c]o # L and
¢lcJo = B.

o {A}c{U B} is called valid in I € Int (notation: = {A}c{ B}) if
o = {A} c{| B} for every o € ¥.

o {A}c{| B} is called valid (notation: = {A}c{B}) if
=1 {A} ¢ {§ B} for every I € Int.
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Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 12.2 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)

{AT skip (4 4] 8 T ol o = o (04}

(Ao UCHCh o (U8} {ANBbe (B} AN B o (U5}
{A} 1500 {I B} {A} if b then ¢; else ¢ {| B}
{i>0NAGE+ 1)} c{JAG)}

{3i.i > 0A A(i)} while b do c{{ A(0)}

FA = A){A}c{{B}E (B — B)

{A} {4 B}
where i € LVar, = (1 > 0N A(i +1) = b), and = (A(0) = —b).
A total correctness property is provable (notation: - {A} ¢ {{ B}) if it is

derivable by the Hoare rules. In case of (while), A(7) is called a (loop)
invariant.

(seq)

(while)

(cons)
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Proving Total Correctness 11

o In rule
{i>0NA@G+1)}e{JA®G)}

(i) 15,5 > 0 A A(3)} while b do ¢ {J A(0))

the notation A(7) indicates that assertion A parametrically
depends on the value of the logical variable ¢ € LVar.
o Idea: ¢ represents the remaining number of loop iterations
o Execution terminated
—> A(0) holds
— execution condition b false
Thus: = (A(0) = —b)
@ Loop to be traversed i + 1 times (i > 0)
—> A(i+ 1) holds
—> execution condition b true

Thus: = (i >0AA(i+1) = b), and i + 1 decreased to i after
execution of ¢
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Total Correctness of Factorial Program

Example 12.3

Proof of {A}y:=1;c{{ B} where

A:=x>0Ax=1)
while —(x=1) do (y:=y*x; x:=x-1)
y =)

c:
B :

(on the board)
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Soundness

In analogy to Theorem 11.3 we can show that the Hoare Logic for total
correctness properties is also sound:

For every total correctness property {A} c{{ B},

F{A}c{UB} = = {A}c{{B}.

again by structural induction over the derivation tree of - {A} ¢ {{ B}
(only (while) case; on the board) O
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Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 11.3 applies:

Theorem 12.5 (Completeness)

The Hoare Logic for total correctness properties is relatively complete,
i.e., for every {A} c{| B}:

F{A}c{ B} = {A}c{UB}.

omitted
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@ Summary: Axiomatic Semantics
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Summary: Axiomatic Semantics

e Formalized by partial/total correctness properties
@ Inductively defined by Hoare Logic proof rules

@ Technically involved (especially loop invariants)
—> machine support (proof assistants) indispensable for larger
programs

e Equivalence of axiomatic and operational /denotational semantics

@ Software engineering aspect: integrated development of program
and proof (cf. assertions in Java)

Rm Semantics and Verification of Software Winter semester 2008,/09 15



	Repetition: Axiomatic Equivalence
	Total Correctness
	Soundness and Completeness
	Summary: Axiomatic Semantics

