Semantics and Verification of Software

Lecture 13: Semantics of Blocks and Procedures

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Extension by Blocks and Procedures

Rm Semantics and Verification of Software ter semester 2008

Blocks and Procedures

o Extension of WHILE by blocks with (local) variables and
(recursive) procedures

Rm Semantics and Verification of Software Winter semester 2008,/09

Blocks and Procedures

o Extension of WHILE by blocks with (local) variables and
(recursive) procedures
o Involves new semantic concepts:

e variable und procedure environments
o locations (memory addresses) and stores (memory states)

Rm Semantics and fication of Software Winter semester 2008

Blocks and Procedures

o Extension of WHILE by blocks with (local) variables and
(recursive) procedures

o Involves new semantic concepts:

e variable und procedure environments
o locations (memory addresses) and stores (memory states)

o Important: scope of variable and procedure identifiers

static scoping: scope of identifier = declaration environment (here)
dynamic scoping: scope of identifier = calling environment
(old Algol/Lisp dialects)

Rm Semantics and Verification of Software Winter semester 2008,/09

Static and Dynamic Scoping

Example 13.1

begin
var x; var y;
proc P is y := x;
x :=1;
begin
var Xx;
X = 2;
call P
end
end

m Semantics and Verification of Software Winter semester 2008,/09

Static and Dynamic Scoping

Example 13.1

begin
var x; var y;
proc P is y := x;
x :=1;
begin static scoping — y =1
var x;
X = 2;
call P
end
end

m' Semantics and Verification of Software Winter semester 2008,/09

Static and Dynamic Scoping

Example 13.1

begin
var x; var y;
proc P is y :
x :=1;
begin static scoping — y =1
var x; dynamic scoping = y = 2
X := 2;
call P
end
end

X;

m' Semantics and Verification of Software Winter semester 2008,/09

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={pP,Q,...} P
Procedure declarations PDec P
Variable declarations VDec v
Commands (statements) Cmd c

Rm Semantics and Verification of Software Winter semester 2008,/09

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={pP,Q,...} P
Procedure declarations PDec P
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p == proc P is ¢;p | e € PDec

v u=var z;v | e € VDec

cu=skip|x :=a|c1;ca | if b then ¢; else ¢y | while b do ¢ |
call P | begin v p c end € Cmd

Rm Semantics and Verification of Software Winter semester 2008,/09

© Operational Semantics of Blocks and Procedures

Rm Semantics and Verification of Software ter semester 2008

Operational Semantics I

o So far: states ¥ = {o | 0 : Var — Z}

Rm Semantics and Verification of Software Winter semester 2008,/09

Operational Semantics I

@ So far: states ¥ ={o | o: Var — Z}
@ Now: explicit control over all (nested) instances of a variable:
o variable environments VEnv := {p | p : Var --» Loc}
¢ (memory) locations Loc := N
o stores Sto:={o | o : Loc --» Z}
(partial function to maintain allocation information)

Rm Semantics and Verification of Software Winter semester 2008,/09

Operational Semantics I

@ So far: states ¥ ={o | o: Var — Z}
@ Now: explicit control over all (nested) instances of a variable:
o variable environments VEnv := {p | p : Var --» Loc}
¢ (memory) locations Loc := N
o stores Sto:={o | o : Loc --» Z}
(partial function to maintain allocation information)
= Two-level access to a variable z € Var:
@ determine current memory location of x:

L:=p(x)

@ reading/writing access to o at position [

Rm Semantics and Verification of Software Winter semester 2008,/09

Operational Semantics I

@ So far: states ¥ ={o | o: Var — Z}
@ Now: explicit control over all (nested) instances of a variable:
o variable environments VEnv := {p | p : Var --» Loc}
¢ (memory) locations Loc := N
o stores Sto:={o | o : Loc --» Z}
(partial function to maintain allocation information)
= Two-level access to a variable z € Var:
@ determine current memory location of x:

L:=p(x)

@ reading/writing access to o at position [

o Thus: previous state information represented as o o p

Rm Semantics and Verification of Software Winter semester 2008,/09

Operational Semantics 11

o Effect of procedure call determined by its body statement and
variable and procedure environment of its declaration:

PEnv :={r | m: PVar --» Cmd x VEnv x PEnv}

denotes the set of procedure environments

Rm Semantics and Verification of Software Winter semester 2008,/09

Operational Semantics 11

o Effect of procedure call determined by its body statement and
variable and procedure environment of its declaration:

PEnv :={r | m: PVar --» Cmd x VEnv x PEnv}

denotes the set of procedure environments

o Effect of declaration: update of environment

upd,[.] : VDec x VEnv x Sto — VEnv x Sto
upd, [var z;v](p, o) := upd,[v](p[z — l;],o[ls — 0])
upd, [e](p; 0) = (p,0)
upd,[.] : PDec x VEnv x PEnv — PEnv
upd, [proc P is c;p](p,m) = upd,[p](p, 7[P — (c, p,7)])
upd, [e](p,) :== 7

where I, :=min{l e N|o(l) = L}

m' Semantics and Verification of Software Winter semester 2008,/09 8

Execution Relation I

Definition 13.2 (Execution relation)

For c € Cmd, 0,0’ € Sto, p € VEnv, and m € PEnv, the execution
relation (p,) b {¢,0) — o’ is defined by the following rules:
(skip)

(p,7) F (skip,0) — 0

(a,00p) — 2

(asgn) (p’ﬂ.) [<;1; =0 U> = 0-[10(3:) = Z]

/"

(pm) F (e1,0) =o' (pm)F (ea,0) =0

(Seq) (p,ﬂ-) - <Cl ;C2,U> = O_II

(boop) = true (pm) F (e1,0

~

(if-t)

p, ™) F (if b then c¢; else co,0

(if-f)

~ |~ ~

(
(b,o 0 p) — false (p,7) F (co,0
(

p,m) F (if b then ¢; else cy,0) — o’

m Semantics and Verification of Software Winter semester 2008,/09

Execution Relation 11

Definition 13.2 (Execution relation; continued)

(b,0 0 p) — false
(p,m) - (while b do ¢,0) — o

(wh-f)

7

(b,0 0 p) — true (p,m) F (¢c,0) — o' (p,m) F (while b do ¢,0’) — o

(wh-t) (p,m) F (while b do ¢,0) — o
(o, 7P~ (c,p,7)]) F (¢,0) — o’) - .
(call) (pT)F (call P.o) — o if 7(P) = (¢, p',7")
upd, [v](p, o) = (p',0') (¢'supd,[p](¢'s 7)) F {c,0') — o”
(block)

(p,7) F (begin v p ¢ end, o) — o”

m' Semantics and Verification of Software Winter semester 2008,/09

Execution Relation III

Remarks about rules (call) and (block):

@ Static scoping is modelled in (call) by using the environments p’
and 7’ (as determined in (block)) from the declaration site of
procedure P (and not p and m from the calling site)

@ In (call), the procedure environment associated with procedure P
is extended by a P-entry to handle recursive calls of P:

'[P (e, p/,7")]

m' Semantics and Verification of Software Winter semester 2008,/09 11

Execution Relation IV

Example 13.3

¢ = begin
var x; var y; }o
proc F is)
begin
var z;
Z = X;
if z=1 then skip o (P
else x := x-1; F
call F; Co €1
y =z *y
end
x :=2; y :=1; call F }co
end
Let oy(l) = pg(x) = mp(P) = L for all I € Loc,x € Var,P € PVar
Notation: o1 < 0(0) =4,0(1) = j,0(2) =k,0(3) =1
Derivation tree for (pg,mg) F (¢, 09) — o1221: on the board

Semantics and Verification of Software

Winter semester 2008,/09

	Extension by Blocks and Procedures
	Operational Semantics of Blocks and Procedures

