
Semantics and Verification of Software

Lecture 13: Semantics of Blocks and Procedures

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Extension by Blocks and Procedures

2 Operational Semantics of Blocks and Procedures

Semantics and Verification of Software Winter semester 2008/09 2

Blocks and Procedures

Extension of WHILE by blocks with (local) variables and
(recursive) procedures

Involves new semantic concepts:

variable und procedure environments
locations (memory addresses) and stores (memory states)

Important: scope of variable and procedure identifiers

static scoping: scope of identifier = declaration environment (here)
dynamic scoping: scope of identifier = calling environment

(old Algol/Lisp dialects)

Semantics and Verification of Software Winter semester 2008/09 3

Static and Dynamic Scoping

Example 13.1

begin

var x; var y;

proc P is y := x;

x := 1;

begin

var x;

x := 2;

call P

end

end

static scoping =⇒ y = 1
dynamic scoping =⇒ y = 2

Semantics and Verification of Software Winter semester 2008/09 4

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p ::= proc P is c;p | ε ∈ PDec

v ::= var x;v | ε ∈ VDec

c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c |
call P | begin v p c end ∈ Cmd

Semantics and Verification of Software Winter semester 2008/09 5

Outline

1 Extension by Blocks and Procedures

2 Operational Semantics of Blocks and Procedures

Semantics and Verification of Software Winter semester 2008/09 6

Operational Semantics I

So far: states Σ = {σ | σ : Var → Z}

Now: explicit control over all (nested) instances of a variable:

variable environments VEnv := {ρ | ρ : Var 99K Loc}
(memory) locations Loc := N

stores Sto := {σ | σ : Loc 99K Z}
(partial function to maintain allocation information)

=⇒ Two-level access to a variable x ∈ Var :
1 determine current memory location of x:

l := ρ(x)

2 reading/writing access to σ at position l

Thus: previous state information represented as σ ◦ ρ

Semantics and Verification of Software Winter semester 2008/09 7

Operational Semantics II

Effect of procedure call determined by its body statement and
variable and procedure environment of its declaration:

PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}

denotes the set of procedure environments

Effect of declaration: update of environment

updvJ.K : VDec × VEnv × Sto → VEnv × Sto

updvJvar x;vK(ρ, σ) := updvJvK(ρ[x 7→ lx], σ[lx 7→ 0])
updvJεK(ρ, σ) := (ρ, σ)

updpJ.K : PDec × VEnv × PEnv → PEnv

updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ (c, ρ, π)])
updpJεK(ρ, π) := π

where lx := min{l ∈ N | σ(l) = ⊥}

Semantics and Verification of Software Winter semester 2008/09 8

Execution Relation I

Definition 13.2 (Execution relation)

For c ∈ Cmd , σ, σ′ ∈ Sto, ρ ∈ VEnv , and π ∈ PEnv , the execution
relation (ρ, π) ⊢ 〈c, σ〉 → σ′ is defined by the following rules:

(skip)
(ρ, π) ⊢ 〈skip, σ〉 → σ

(asgn)
〈a, σ ◦ ρ〉 → z

(ρ, π) ⊢ 〈x := a, σ〉 → σ[ρ(x) 7→ z]

(seq)
(ρ, π) ⊢ 〈c1, σ〉 → σ′ (ρ, π) ⊢ 〈c2, σ

′〉 → σ′′

(ρ, π) ⊢ 〈c1;c2, σ〉 → σ′′

(if-t)
〈b, σ ◦ ρ〉 → true (ρ, π) ⊢ 〈c1, σ〉 → σ′

(ρ, π) ⊢ 〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ ◦ ρ〉 → false (ρ, π) ⊢ 〈c2, σ〉 → σ′

(ρ, π) ⊢ 〈if b then c1 else c2, σ〉 → σ′

Semantics and Verification of Software Winter semester 2008/09 9

Execution Relation II

Definition 13.2 (Execution relation; continued)

(wh-f)
〈b, σ ◦ ρ〉 → false

(ρ, π) ⊢ 〈while b do c, σ〉 → σ

(wh-t)
〈b, σ ◦ ρ〉 → true (ρ, π) ⊢ 〈c, σ〉 → σ′ (ρ, π) ⊢ 〈while b do c, σ′〉 → σ′′

(ρ, π) ⊢ 〈while b do c, σ〉 → σ′′

(call)
(ρ′, π′[P 7→ (c, ρ′, π′)]) ⊢ 〈c, σ〉 → σ′

(ρ, π) ⊢ 〈call P, σ〉 → σ′
if π(P) = (c, ρ′, π′)

(block)
updvJvK(ρ, σ) = (ρ′, σ′) (ρ′, updpJpK(ρ′, π)) ⊢ 〈c, σ′〉 → σ′′

(ρ, π) ⊢ 〈begin v p c end, σ〉 → σ′′

Semantics and Verification of Software Winter semester 2008/09 10

Execution Relation III

Remarks about rules (call) and (block):

Static scoping is modelled in (call) by using the environments ρ′

and π′ (as determined in (block)) from the declaration site of
procedure P (and not ρ and π from the calling site)

In (call), the procedure environment associated with procedure P

is extended by a P -entry to handle recursive calls of P :

π′[P 7→ (c, ρ′, π′)]

Semantics and Verification of Software Winter semester 2008/09 11

Execution Relation IV

Example 13.3

c = begin

var x; var y; } v
proc F is

begin

var z;

z := x;

if z=1 then skip

else x := x-1;

call F;

y := z * y







c2















c1

end











































cF



















































p

x := 2; y := 1; call F
}

c0

end

Let σ∅(l) = ρ∅(x) = π∅(P) = ⊥ for all l ∈ Loc, x ∈ Var , P ∈ PVar

Notation: σijkl ⇔ σ(0) = i, σ(1) = j, σ(2) = k, σ(3) = l

Derivation tree for (ρ∅, π∅) ⊢ 〈c, σ∅〉 → σ1221: on the board

Semantics and Verification of Software Winter semester 2008/09 12

	Extension by Blocks and Procedures
	Operational Semantics of Blocks and Procedures

