Semantics and Verification of Software

Lecture 14: Dataflow Analysis I (Introduction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Repetition: Operational Semantics of Blocks and Procedures

Rm Semantics and fication of Software Winter semester 2008

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={pP,Q,...} P
Procedure declarations PDec P
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p == proc P is ¢;p | e € PDec

v u=var z;v | e € VDec

cu=skip|x :=a|c1;ca | if b then ¢; else ¢y | while b do ¢ |
call P | begin v p c end € Cmd

Rm Semantics and Verification of Software Winter semester 2008,/09

Execution Relation I

Definition (Execution relation)

For c € Cmd, 0,0’ € Sto, p € VEnv, and m € PEnv, the execution
relation (p,) b {¢,0) — o’ is defined by the following rules:
(skip)

(p,7) F (skip,0) — 0

(a,00p) — 2

(asgn) (p’ﬂ.) [<;1; =0 U> = 0-[10(3:) = Z]

/"

(pm) F (e1,0) =o' (pm)F (ea,0) =0

(Seq) (p,ﬂ-) - <Cl ;C2,U> = O_II

(boop) = true (pm) F (e1,0

~

(if-t)

p, ™) F (if b then c¢; else co,0

(if-f)

~ |~ ~

(
(b,o 0 p) — false (p,7) F (co,0
(

p,m) F (if b then ¢; else cy,0) — o’

m Semantics and Verification of Software Winter semester 2008,/09

Execution Relation 11

Definition (Execution relation; continued)

(b,0 0 p) — false
(p,m) - (while b do ¢,0) — o

(wh-f)

7

(b,0 0 p) — true (p,m) F (¢c,0) — o' (p,m) F (while b do ¢,0’) — o

(wh-t) (p,m) F (while b do ¢,0) — o
(o, 7P~ (c,p,7)]) F (¢,0) — o’) - .
(call) (pT)F (call P.o) — o if 7(P) = (¢, p',7")
upd, [v](p, o) = (p',0') (¢'supd,[p](¢'s 7)) F {c,0') — o”
(block)

(p,7) F (begin v p ¢ end, o) — o”

m' Semantics and Verification of Software Winter semester 2008,/09

© Denotational Semantics of Blocks and Procedures

Rm Semantics and Verification of Software ter semester 2008

A Glimpse at the Denotational Semantics

Similar as before: statements denote storage transformations

New: dependence on environments

€[.] : Cmd x VEnv x PEnv — (Sto --» Sto)

Variable environment obtained as before:
VEnv :={p|p: Var --» Loc}

@ Procedures now interpreted as storage transformations:
PDec := {n | m: PVar --» (Sto --» Sto)}
o Recursive procedure declarations involve fixpoints:

D[] : PDec x VEnv x PEnv — PEnv
D, [proc P is c|(p,7) = (p, 7[P — fix(®)))

©

where

® : (Sto --» Sto) — (Sto --» Sto)
o(f) := €lel(p, =[P — f1)

Rm Semantics and Verification of Software Winter semester 2008,/09

© Preliminaries on Dataflow Analysis

Rm Semantics and Verification of Software ter semester 2008

Dataflow Analysis: the Approach

o Traditional form of program analysis
@ Idea: describe how analysis information flows through program
o Distinctions:

direction of flow: forward vs. backward analyses

procedures: interprocedural vs. intraprocedural analyses

quantification over paths: may (union) vs. must (intersection)
analyses

dependence on statement order: flow-sensitive vs. flow-insensitive
analyses

distinction of procedure calls: context-sensitive vs.
context-insensitive analyses

Rm Semantics and Verification of Software Winter semester 2008,/09

Labelled Programs

o Goal: localization of analysis information
@ Dataflow information will be associated with
@ assignments
¢ tests in conditionals (if) and loops (while)
o skip statements
These constructs will be called blocks.
o Assume set of labels L with meta variable [€ L

(usually L = N)

Definition 14.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a:=z|x|ar+ag | aj-as | ay*az € AExp
bu=1t]ar=as | a1>a9 | —b | by Aby | by Vby € BExp
c = [skip)' | [z :=a]' | c15¢0 |

if [b]' then ¢; else ¢y | while [b]' do c € Cmd
Here all labels in a statement ¢ € Cmd are assumed to be distinct.

m Semantics and Verification of Software Winter semester 2008,/09 10

A WHILE Program with Labels

Example 14.2

X := 6;
y = 7;
z := 0;

while x > 0 do
X :=x - 1;
vV =y,
while v > 0 d
v :=v - 1;
z =z + 1;

m' Semantics and Verification of Software Winter semester 2008,/09

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels):

Definition 14.3 (Initial and final labels)

The mapping init : Cmd — L returns the initial label of a statement:
|n|t([sk1p]) =1
init([z :=a]’) :
init(C]_;CQ) :
init(if [b]' then c; else cp) =
init(while [b]' do c) := 1
The mapping final : Cmd — 2% returns the set of final labels of a

statement:
fmal([sklp]l) = {l}
final([z := a]') : {1}
flnal(cl, co) := final(c2)
final(if [b)' then c1 else cp) := final(cy) U final(cz)
final(while [b]' do ¢) := {I}

m' Semantics and Verification of Software Winter semester 2008,/09 12

Representing Control Flow II

Definition 14.4 (Flow relation)

Given a statement ¢ € Cmd, the (control) flow relation flow(c) C L x L
is defined by

row([sklp]) =10
flow([z :=a]') := 0
ﬂOW(C]_,CQ) = flow(cy) U flow(cz) U

flow(if [b]' then ¢; else cz) := flow(c1) U flow(cz) U

{(1,init(c1)), (1, init(c))}
flow(while [b)' do ¢) := flow(c) U {(I,init(c))} U
l/

{(U', 1) | I €final(c)}

)
{(, Inlt)(CQ)) | I € final(c1)}
|

(

m' Semantics and Verification of Software Winter semester 2008,/09

Representing Control Flow III

Example 14.5

Visualization by flow graph:

Semantics and Verification of Software Winter semester 2008,/09 14

Representing Control Flow IV

o To simplify the presentation we will often assume that the program
¢ € Cmd under consideration has an isolated entry, meaning that

{l e L|(l,init(c)) € flow(c)} =0

(which is the case when ¢ does not start with a while loop)
o Similarly: ¢ € Cmd has isolated exits if

{l' e L'| (1,I') € flow(c) for some [€ final(c)} =0

Example 14.6

has an isolated entry but not isolated exits

Semantics and Verification of Software Winter semester 2008,/09 15

@ An Example: Available Expressions Analysis

Rm Semantics and Verification of Software ter semester 2008

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example 14.7 (Available Expressions Analysis)

F{ : ZIE}; @ a+b available at label 3
w%nle [y > a+b]® do @ at+b not available at label 5
[a := a*1]’; @ possible optimization:
[x := atb]’ wvhile [y > x® do

m Semantics and Verification of Software Winter semester 2008,/09 17

Formalizing Available Expressions Analysis I

o Given ¢ € Cmd, L./Block./AExp,. denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

@ An expression ¢ is killed in a block B if any of the variables in a is
modified in B

o Formally: killag : Block. — 24L7p. ig defined by
killag ([skip]!) := 0
killag([z :=a]!) := {a' € AEap,. |z € FV(a')}
ki”AE([b]l) = (Z)
o An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B
o Formally: genag : Block. — 24%%¢ is defined by
genag([skip]') == 0
genag([z :=a]') == {
genae([b]') == AEzp,

Rm Semantics and Verification of Software Winter semester 2008,/09 18

Formalizing Available Expressions Analysis I1

Example 14.8 (killag/genag functions)

. o AFEzp,. = {atb,a*b,a+1}
c= := atb|"; .

E := a*b%' o L. kI”AE(Bl) genAE(Bl)

while [y > a+b]® do ! 0 oy

[a := a+1]*; 2 g {axb}

[x := a+b]5, s ’ {asb}

: 4 {at+b,a*b,a+1} ()
5 0 {a+b}

m' Semantics and Verification of Software Winter semester 2008,/09 19

The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € L., AE; C AEzp, represents the set of available
expressions at the entry of block B!
@ Formally, for ¢ € CU'md with isolated entry:
AE, — {@ if = init(c)
(e (AEy) | (I',1) € flow(c)} otherwise
where @y : 2487 — 2ABc denotes the transfer function of block
B, given by
pr(A) = (A\ killag(B")) U genag (B")
@ Characterization of analysis:
forward: starts in init(c) and proceeds downwards
must: () in equation for AE,
flow—sensitive: results depending on order of assignments

o Later: solution not necessarily unique
—> choose greatest one

Rm Semantics and Verification of Software Winter semester 2008,/09

The Equation System II

) . (0 if I = init(c)
Reminder: AE; = {ﬂ{wl'(AEl' (I',1) € flow(c)} otherwise

|
pr(E) = (E\ killag(B")) U genae(B")

Example 14.9 (AE equation system)

c=[x := atb]!; Equations:
[y := a*b]?; ﬁ? :g B B e
hil > a+b|® d 2 =¥ 1) = AEq
b Ea e-iy a+1e]a‘:r- ' do AE3 = p3(AE2) N 5 (AEs)
= +b]5’ = (AEz U {a*b}) N (AE5 U {a+b})
[X = a AE, = <p3(AE3) = AE; U {a+b}

AEs = @4(AE4) = AE4 \ {a+b,a*b,a+1}
L€ L, kilae(B) genag(BY)

1 0 {a+b} Solution: AE; =0
2 0 {a*b} AE; = {a+b}
3 0 {a+b} AE; = {a+b}
4 {a+b,axb,a+1} 1] AE; = {a+b}
5 0 {a+b} AE5 = 0)

m' Semantics and Verification of Software Winter semester 2008,/09 21

	Repetition: Operational Semantics of Blocks and Procedures
	Denotational Semantics of Blocks and Procedures
	Preliminaries on Dataflow Analysis
	An Example: Available Expressions Analysis

