
Semantics and Verification of Software

Lecture 14: Dataflow Analysis I (Introduction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Repetition: Operational Semantics of Blocks and Procedures

2 Denotational Semantics of Blocks and Procedures

3 Preliminaries on Dataflow Analysis

4 An Example: Available Expressions Analysis

Semantics and Verification of Software Winter semester 2008/09 2

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p ::= proc P is c;p | ε ∈ PDec
v ::= var x;v | ε ∈ VDec
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c |

call P | begin v p c end ∈ Cmd

Semantics and Verification of Software Winter semester 2008/09 3

Execution Relation I

Definition (Execution relation)

For c ∈ Cmd , σ, σ′ ∈ Sto, ρ ∈ VEnv , and π ∈ PEnv , the execution
relation (ρ, π) ⊢ 〈c, σ〉 → σ′ is defined by the following rules:

(skip)
(ρ, π) ⊢ 〈skip, σ〉 → σ

(asgn)
〈a, σ ◦ ρ〉 → z

(ρ, π) ⊢ 〈x := a, σ〉 → σ[ρ(x) 7→ z]

(seq)
(ρ, π) ⊢ 〈c1, σ〉 → σ′ (ρ, π) ⊢ 〈c2, σ

′〉 → σ′′

(ρ, π) ⊢ 〈c1;c2, σ〉 → σ′′

(if-t)
〈b, σ ◦ ρ〉 → true (ρ, π) ⊢ 〈c1, σ〉 → σ′

(ρ, π) ⊢ 〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ ◦ ρ〉 → false (ρ, π) ⊢ 〈c2, σ〉 → σ′

(ρ, π) ⊢ 〈if b then c1 else c2, σ〉 → σ′

Semantics and Verification of Software Winter semester 2008/09 4

Execution Relation II

Definition (Execution relation; continued)

(wh-f)
〈b, σ ◦ ρ〉 → false

(ρ, π) ⊢ 〈while b do c, σ〉 → σ

(wh-t)
〈b, σ ◦ ρ〉 → true (ρ, π) ⊢ 〈c, σ〉 → σ′ (ρ, π) ⊢ 〈while b do c, σ′〉 → σ′′

(ρ, π) ⊢ 〈while b do c, σ〉 → σ′′

(call)
(ρ′, π′[P 7→ (c, ρ′, π′)]) ⊢ 〈c, σ〉 → σ′

(ρ, π) ⊢ 〈call P, σ〉 → σ′
if π(P) = (c, ρ′, π′)

(block)
updvJvK(ρ, σ) = (ρ′, σ′) (ρ′, updpJpK(ρ′, π)) ⊢ 〈c, σ′〉 → σ′′

(ρ, π) ⊢ 〈begin v p c end, σ〉 → σ′′

Semantics and Verification of Software Winter semester 2008/09 5

Outline

1 Repetition: Operational Semantics of Blocks and Procedures

2 Denotational Semantics of Blocks and Procedures

3 Preliminaries on Dataflow Analysis

4 An Example: Available Expressions Analysis

Semantics and Verification of Software Winter semester 2008/09 6

A Glimpse at the Denotational Semantics

Similar as before: statements denote storage transformations

New: dependence on environments
CJ.K : Cmd × VEnv × PEnv → (Sto 99K Sto)

Variable environment obtained as before:
VEnv := {ρ | ρ : Var 99K Loc}

Procedures now interpreted as storage transformations:
PDec := {π | π : PVar 99K (Sto 99K Sto)}

Recursive procedure declarations involve fixpoints:

DpJ.K : PDec × VEnv × PEnv → PEnv
DpJproc P is cK(ρ, π) := (ρ, π[P 7→ fix(Φ)])

where
Φ : (Sto 99K Sto) → (Sto 99K Sto)

Φ(f) := CJcK(ρ, π[P 7→ f])

Semantics and Verification of Software Winter semester 2008/09 7

Outline

1 Repetition: Operational Semantics of Blocks and Procedures

2 Denotational Semantics of Blocks and Procedures

3 Preliminaries on Dataflow Analysis

4 An Example: Available Expressions Analysis

Semantics and Verification of Software Winter semester 2008/09 8

Dataflow Analysis: the Approach

Traditional form of program analysis

Idea: describe how analysis information flows through program

Distinctions:

direction of flow: forward vs. backward analyses
procedures: interprocedural vs. intraprocedural analyses
quantification over paths: may (union) vs. must (intersection)

analyses
dependence on statement order: flow-sensitive vs. flow-insensitive

analyses
distinction of procedure calls: context-sensitive vs.

context-insensitive analyses

Semantics and Verification of Software Winter semester 2008/09 9

Labelled Programs

Goal: localization of analysis information
Dataflow information will be associated with

assignments
tests in conditionals (if) and loops (while)
skip statements

These constructs will be called blocks.

Assume set of labels L with meta variable l ∈ L

(usually L = N)

Definition 14.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

c ::= [skip]l | [x := a]l | c1;c2 |
if [b]l then c1 else c2 | while [b]l do c ∈ Cmd

Here all labels in a statement c ∈ Cmd are assumed to be distinct.

Semantics and Verification of Software Winter semester 2008/09 10

A WHILE Program with Labels

Example 14.2

x := 6;

y := 7;

z := 0;

while x > 0 do

x := x - 1;

v := y;

while v > 0 do

v := v - 1;

z := z + 1;

Semantics and Verification of Software Winter semester 2008/09 11

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels):

Definition 14.3 (Initial and final labels)

The mapping init : Cmd → L returns the initial label of a statement:
init([skip]l) := l

init([x := a]l) := l
init(c1;c2) := init(c1)

init(if [b]l then c1 else c2) := l
init(while [b]l do c) := l

The mapping final : Cmd → 2L returns the set of final labels of a
statement:

final([skip]l) := {l}
final([x := a]l) := {l}

final(c1;c2) := final(c2)
final(if [b]l then c1 else c2) := final(c1) ∪ final(c2)

final(while [b]l do c) := {l}

Semantics and Verification of Software Winter semester 2008/09 12

Representing Control Flow II

Definition 14.4 (Flow relation)

Given a statement c ∈ Cmd , the (control) flow relation flow(c) ⊆ L × L

is defined by

flow([skip]l) := ∅
flow([x := a]l) := ∅

flow(c1;c2) := flow(c1) ∪ flow(c2) ∪
{(l, init(c2)) | l ∈ final(c1)}

flow(if [b]l then c1 else c2) := flow(c1) ∪ flow(c2) ∪
{(l, init(c1)), (l, init(c2))}

flow(while [b]l do c) := flow(c) ∪ {(l, init(c))} ∪
{(l′, l) | l′ ∈ final(c)}

Semantics and Verification of Software Winter semester 2008/09 13

Representing Control Flow III

Example 14.5

c = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

true

false

Semantics and Verification of Software Winter semester 2008/09 14

Representing Control Flow IV

To simplify the presentation we will often assume that the program
c ∈ Cmd under consideration has an isolated entry, meaning that

{l ∈ L | (l, init(c)) ∈ flow(c)} = ∅

(which is the case when c does not start with a while loop)
Similarly: c ∈ Cmd has isolated exits if

{l′ ∈ L | (l, l′) ∈ flow(c) for some l ∈ final(c)} = ∅

Example 14.6

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

has an isolated entry but not isolated exits

Semantics and Verification of Software Winter semester 2008/09 15

Outline

1 Repetition: Operational Semantics of Blocks and Procedures

2 Denotational Semantics of Blocks and Procedures

3 Preliminaries on Dataflow Analysis

4 An Example: Available Expressions Analysis

Semantics and Verification of Software Winter semester 2008/09 16

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example 14.7 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Semantics and Verification of Software Winter semester 2008/09 17

Formalizing Available Expressions Analysis I

Given c ∈ Cmd , Lc/Block c/AExpc denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

An expression a is killed in a block B if any of the variables in a is
modified in B

Formally: killAE : Block c → 2AExp
c is defined by

killAE([skip]l) := ∅
killAE([x := a]l) := {a′ ∈ AExpc | x ∈ FV (a′)}

killAE([b]l) := ∅

An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B

Formally: genAE : Block c → 2AExp
c is defined by

genAE([skip]l) := ∅
genAE([x := a]l) := {a | x /∈ FV (a)}

genAE([b]l) := AExpb

Semantics and Verification of Software Winter semester 2008/09 18

Formalizing Available Expressions Analysis II

Example 14.8 (killAE/gen
AE

functions)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

AExpc = {a+b, a*b, a+1}

Lc killAE(Bl) genAE(Bl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Semantics and Verification of Software Winter semester 2008/09 19

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Lc, AEl ⊆ AExpc represents the set of available
expressions at the entry of block Bl

Formally, for c ∈ Cmd with isolated entry:

AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

where ϕl′ : 2AExp
c → 2AExp

c denotes the transfer function of block
Bl′ , given by

ϕl′(A) := (A \ killAE(Bl′)) ∪ genAE(Bl′)

Characterization of analysis:

forward: starts in init(c) and proceeds downwards
must:

⋂

in equation for AEl

flow–sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose greatest one

Semantics and Verification of Software Winter semester 2008/09 20

The Equation System II

Reminder: AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

ϕl′ (E) = (E \ killAE(Bl
′

)) ∪ genAE(Bl
′

)

Example 14.9 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Lc killAE(Bl) genAE(Bl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Semantics and Verification of Software Winter semester 2008/09 21

	Repetition: Operational Semantics of Blocks and Procedures
	Denotational Semantics of Blocks and Procedures
	Preliminaries on Dataflow Analysis
	An Example: Available Expressions Analysis

