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Labelled Programs

o Goal: localization of analysis information
@ Dataflow information will be associated with
o skip statements
¢ assignments
¢ tests in conditionals (if) and loops (while)
These constructs will be called blocks.
o Assume set of labels L with meta variable [ € L

(usually L = N)

Definition (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a:=z|x|ar+ag | aj-as | ay*az € AExp
bu=1t]ar=as | a1>a9 | —b | by Aby | by Vby € BExp
c = [skip)' | [z :=a]' | c15¢0 |

if [b]' then ¢; else ¢y | while [b]' do c € Cmd
Here all labels in a statement ¢ € Cmd are assumed to be distinct.
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Representing Control Flow

Visualization by flow graph:

Semantics and Verification of Software Winter semester 2008,/09 4



Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.
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Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions
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Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

[x := a+b]!;

[y := axb]?;

while [y > a+b]? do
[a := a+1]*;
[x := a+b]®
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Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

- 1.
% = 212}2 @ a+b available at label 3
while [y > a+b]’® do
[a := a+1]4;
[x := a+b]5
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Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

- 1.
% = 212}2 @ a+b available at label 3
while [y > a+b]? do @ a+b not available at label 5
[a := a+1]*;
[x := a+b]5
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Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

F{ : Z:E}; @ a+b available at label 3
w%nle [y > a+b]? do @ at+b not available at label 5
[a := a*1]’; @ possible optimization:
[x := a+b]® while [y > x? do
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The Equation System

) . (0 if I = init(c)
Reminder: AE; = {ﬂ{sﬂl'(AEl' (I',1) € flow(c)} otherwise

|
pr(E) = (E\ killag(B")) U genae(B")
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The Equation System

) . (0 if I = init(c)
Reminder: AE; = {ﬂ{wl'(AEl' (I',1) € flow(c)} otherwise

|
pr(E) = (E\ killag(B")) U genae(B")

Example (AE equation system)

c=[x := atb]!;
[y := axb]?;
while [y > a+b]® do
[a := a+1]*;
a+b|®

=
I
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The Equation System

) . (0 if I = init(c)
Reminder: AE; = {ﬂ{wl'(AEl' (I',1) € flow(c)} otherwise

|
pr(E) = (E\ killag(B")) U genae(B")

Example (AE equation system)

c=[x := atb]!;
[y := axb]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

1€ L. killag(B') genae(BY)

1 0 {a+b}
2 0 {axb}
3 0 {a+b}
4 {a+b,axb,a+l} 0

5 0 {a+b}
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The Equation System
. 0 if [ = init
Reminder: AR = {ﬂ{wl'(AEl/ | (I',1) € flow(c)} i)thervlvr;lse(C)
pu(E) = (E\ kilag(B")) U genag(B")

Example (AE equation system)

c=[x := atb]!; Equations:
[y := axb]?; ﬁEl :2 B B e
hil > a+b]® d 2 = P1(Ak1) = ALy
PO AR AR N (AR
[ 1= arb] = (AE2 U {axb}) N (AE; U {a+b})
1= a AE, = <p3(AE3) = AE3 U {a+b}

AEs = ¢4(AE4) = AE; \ {a+b, a*b,a+1}
L€ L, kilae(B") genae(BY)

1 0 {a+b}
2 0 {a*b}
3 0 {a+b}
4 {a+b,axb,a+1} )

5 0 {a+b}
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The Equation System

) . (0 if I = init(c)
Reminder: AE; = {ﬂ{wl'(AEl' (I',1) € flow(c)} otherwise

|
pr(E) = (E\ killag(B")) U genae(B")

Example (AE equation system)

c=[x := atb]!; Equations:
[y := a*b]?; ﬁ? :g B B e
hil > a+b]® d 2 = P1(Ak1) = ALy
b Ea e-iy a+12]14 . ' do AE3 = p3(AE2) N 5 (AEs)
p— = (AE; U {a%b}) N (AE; U {a+b})
X = a AE, = <p3(AE3) = AE; U {a+b}

AEs = @4(AE4) = AE4 \ {a+b,a*b,a+1}
L€ L, kilae(B) genag(BY)

1 0 {a+b} Solution: AE; =0
2 0 {a*b} AE; = {a+b}
3 0 {a+b} AE; = {a+b}
4 {a+b,axb,a+1} 1] AE; = {a+b}
5 0 {a+b} AE5 = 0)
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© Live Variables Analysis
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

o All variables considered to be live at the end of the program
(alternative: restriction to output variables)
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

o All variables considered to be live at the end of the program
(alternative: restriction to output variables)

@ Can be used for Dead Code Elimination:
remove assignments to non-live variables
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An Example

Example 15.1 (Live Variables Analysis)
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An Example

Example 15.1 (Live Variables Analysis
I )

[y := 4]%; @ x not live at exit from label 1
x = 1]
if [y > 0]* then
[z := x]°
else
[z = y*y]%
[x := 2]
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An Example

Example 15.1 (Live Variables Analysis
I )

[y := 4];: @ x not live at exit from label 1
[fo [Y- >1]Oj4 then o y live at exit from 2
else
[z := y*yl®;
[x = 2]7
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An Example

Example 15.1 (Live Variables Analysis)

[y := 4]§§ @ x not live at exit from label 1
[le [y= >1]O] 4 then @ y live at exit from 2
[z := x]° @ x live at exit from 3
else
[z = y*y]%;
x := 2]
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An Example

Example 15.1 (Live Variables Analysis)

[y := 4]§§ @ x not live at exit from label 1
[le [y= >1]O] 4 then @ y live at exit from 2

[z := x)° @ x live at exit from 3
elSZe I @ z live at exits from 5 and 6
[X[ . Z]7y yl"s
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An Example

Example 15.1 (Live Variables Analysis)

[y := 4]3, @ x not live at exit from label 1
[le [y— >1 ]O]4 then @ y live at exit from 2
[z := x]5 @ x live at exit from 3
else . o z live at exits from 5 and 6
Ix [Z_ ;]7Y*Y] ’ @ possible optimization: remove [x := 2!
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Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill
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Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

o Formally: kill,y : Block. — 2% is defined by
ki||Lv([Skip]l) =10
killoy ([ := a]') := {x}
killpy ([b]1) == 0
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Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

o Formally: kiIILV Blorkc — 2Vere is defined by
kIIILV([sklp] ) =

killoy ([z ]l) { }
klllLv([ ] ) @

o Every reading access generates a live variable
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Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

o Formally: kill\y : Block. — 2V is defined by
ki||Lv([Skip]l) =10
killoy ([ := a]') := {x}
killpy ([b]1) == 0
o Every reading access generates a live variable
o Formally: gen,y : Block. — 2"« is defined by
genag([skip]') == 0
genae([z :=a)') := FV(a)
genae([B]') == FV
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Formalizing Live Variables Analysis II

Example 15.2 (kill,y/gen,y functions)
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Formalizing Live Variables Analysis II

Example 15.2 (kill,y/gen,y functions)

e=[x=2]5; o Var. = {x,y,z}
ly := 4]?;
= o= 1P;
if [y > 0]* then
= o= P
else
[z := y*y]%;
[x := 2]
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Formalizing Live Variables Analysis II

Example 15.2 (kill,y/gen,y functions)

c=[x := 2)%; o Var. ={x,y,z}

[y = 43; o [ € L. killy (B genyy, (BY)

[x := 1]3; 1 {x} 0

if [y > 0]* then 2 {y} 0

[z := x]° 3 {x} 0

else 4 0 {y}

[z = y*yl°; 5 {z} {x}

[x := 2" 6 {z} {y}

7 {x} {z}

m Semantics and Verification of Software Winter semester 2008,/09 11



The Equation System I

@ For each [ € L., LV; C Var,. represents the set of live variables at
the exit of block B!
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The Equation System I

@ For each [ € L., LV; C Var,. represents the set of live variables at
the exit of block B!

@ Formally, for a program ¢ € C'md with isolated exits:

LV, = Var, ifl e final(c)
EZ Y ULor (V) | (1,17) € flow(c)}  otherwise

where oy : 2V0e — 2VaTe denotes the transfer function of block
BY, given by

or(V) := (V \ killy (B")) U geny (BY)
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The Equation System I

@ For each [ € L., LV; C Var,. represents the set of live variables at
the exit of block B!

@ Formally, for a program ¢ € C'md with isolated exits:

LV, = Var, ifl e final(c)
EZ Y ULor (V) | (1,17) € flow(c)}  otherwise

where oy : 2V0e — 2VaTe denotes the transfer function of block
BY, given by
(V) = (V \ killoy (B")) U genyy (BY)
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: |J in equation for LV,
flow-sensitive: results depending on order of assignments
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The Equation System I

@ For each [ € L., LV; C Var,. represents the set of live variables at
the exit of block B!

@ Formally, for a program ¢ € C'md with isolated exits:

LV, = Var, ifl e final(c)
EZ Y ULor (V) | (1,17) € flow(c)}  otherwise

where oy : 2V0e — 2VaTe denotes the transfer function of block
BY, given by
(V) = (V \ killoy (B")) U genyy (BY)
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: |J in equation for LV,

flow-sensitive: results depending on order of assignments
o Later: solution not necessarily unique

= choose least one
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The Equation System II

Var, if [ € final(c)

Reminder: Lv; = {U{soz/(LVl’ (1,I') € flow(c)} otherwise

|
v (V) = (V \ killag(B")) U genae(B")
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The Equation System II

] . | Var, if I € final(c)
Reminder: Lv; = {U{QDN(LVV (1,I') € flow(c)} otherwise

|
v (V) = (V \ killag(B")) U genae(B")

Example 15.3 (LV equation system)
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The Equation System II

] . | Var, if I € final(c)
Reminder: Lv; = {U{QDN(LVV) (1,I') € flow(c)} otherwise

|
v (V) = (V \ killag(B")) U genae(B")

Example 15.3 (LV equation system)
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The Equation System II

] . | Var, if I € final(c)
Reminder: Lv; = {U{QDN(LVV) (1,I') € flow(c)} otherwise

|
pu (V) = (V \ killag(B")) U genae(B")

Example 15.3 (LV equation system)
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The Equation System II

] . | Var, if I € final(c)
Reminder: LV, = {U{@l,(LVl )| (V) € flow(c)} otherwise

|
pu (V) = (V \ killag(B")) U genae(B")

Example 15.3 (LV equation system)

) =
i A
> ) =LV U{y}
[Z := X]5 LV, = @5(LV5) U QOG(LVG)
else . = ((LVs \ {z}) U{x}) U ((LVs \ {z}) U {y})
[z = y*y]°; Vs = p7(LV7) = (LV7 \ {x}) U{z}
[x := 2]” |I:¥5 = <{p7(LV7}? = (Lv7 \ {x}) u{z}
I € L, killy(B') gen,y (B! 7= B
1 {x(} L L\é( ) Solution: LV; =0
2 {v} 0 Vo = {y}
3 {x} 0 LVs = {x,y}
4 0 {v} LV, = {x,y}
5 {z} {x} LVs = {y,z}
6 {z} {y} Ve = {y, 2z}
7 {x} {z} V7 = {x,y,2}
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© Heading for a Dataflow Analysis Framework
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Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
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Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities

— Look for underlying framework
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Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
— Look for underlying framework

@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations
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Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
— Look for underlying framework
@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

o Overall pattern: for c € CUmd and [ € L., the analysis
information (Al) is described by equations of the form

Al — {L ifleE
PV L o (Aly) | (1) € FY - otherwise
where
o ¢ specifies the initial analysis information
o E is {init(c)} or final(c)
o JisNorU
e ¢ denotes the transfer function of block BY
o Fis flow(c) or flow™(c) (:= {(I',1) | (1, 1) € flow(c)})
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Characterization of Analyses

o Direction of information flow:
o forward:
o F = flow(c)
@ Al; concerns entry of B!
9 c has isolated entry

o backward:
o F = flow™(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits
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Characterization of Analyses

o Direction of information flow:
o forward:
o F = flow(c)
@ Al; concerns entry of B!
9 c has isolated entry

@ backward:
o F = flow™(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

o Quantification over paths:

e may:
o LU=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
o LI=nN
@ property satisfied by all paths
@ interested in greatest solution (later)
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