Semantics and Verification of Software

Lecture 15: Dataflow Analysis II
(Available Expressions & Live Variables)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

© Repetition: Dataflow Analysis

Rm Semantics and Verification of Software ter semester 2008

Labelled Programs

o Goal: localization of analysis information
@ Dataflow information will be associated with
o skip statements
¢ assignments
¢ tests in conditionals (if) and loops (while)
These constructs will be called blocks.
o Assume set of labels L with meta variable [€ L

(usually L = N)

Definition (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a:=z|x|ar+ag | aj-as | ay*az € AExp
bu=1t]ar=as | a1>a9 | —b | by Aby | by Vby € BExp
c = [skip)' | [z :=a]' | c15¢0 |

if [b]' then ¢; else ¢y | while [b]' do c € Cmd
Here all labels in a statement ¢ € Cmd are assumed to be distinct.

m Semantics and Verification of Software Winter semester 2008,/09

Representing Control Flow

Visualization by flow graph:

Semantics and Verification of Software Winter semester 2008,/09 4

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

m' Semantics and Verification of Software Winter semester 2008,/09

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

m' Semantics and Verification of Software Winter semester 2008,/09

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

[x := a+b]!;

[y := axb]?;

while [y > a+b]? do
[a := a+1]*;
[x := a+b]®

m Semantics and Verification of Software Winter semester 2008,/09

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

- 1.
% = 212}2 @ a+b available at label 3
while [y > a+b]’® do
[a := a+1]4;
[x := a+b]5

m Semantics and Verification of Software Winter semester 2008,/09

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

- 1.
% = 212}2 @ a+b available at label 3
while [y > a+b]? do @ a+b not available at label 5
[a := a+1]*;
[x := a+b]5

m Semantics and Verification of Software Winter semester 2008,/09

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

F{ : Z:E}; @ a+b available at label 3
w%nle [y > a+b]? do @ at+b not available at label 5
[a := a*1]’; @ possible optimization:
[x := a+b]® while [y > x? do

m Semantics and Verification of Software Winter semester 2008,/09

The Equation System

) . (0 if I = init(c)
Reminder: AE; = {ﬂ{sﬂl'(AEl' (I',1) € flow(c)} otherwise

|
pr(E) = (E\ killag(B")) U genae(B")

Rm Semantics and Verification of Software Winter semester 2008,/09 6

The Equation System

) . (0 if I = init(c)
Reminder: AE; = {ﬂ{wl'(AEl' (I',1) € flow(c)} otherwise

|
pr(E) = (E\ killag(B")) U genae(B")

Example (AE equation system)

c=[x := atb]!;
[y := axb]?;
while [y > a+b]® do
[a := a+1]*;
a+b|®

=
I

m Semantics and Verification of Software Winter semester 2008,/09 6

The Equation System

) . (0 if I = init(c)
Reminder: AE; = {ﬂ{wl'(AEl' (I',1) € flow(c)} otherwise

|
pr(E) = (E\ killag(B")) U genae(B")

Example (AE equation system)

c=[x := atb]!;
[y := axb]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

1€ L. killag(B') genae(BY)

1 0 {a+b}
2 0 {axb}
3 0 {a+b}
4 {a+b,axb,a+l} 0

5 0 {a+b}

m' Semantics and Verification of Software Winter semester 2008,/09 6

The Equation System
. 0 if [= init
Reminder: AR = {ﬂ{wl'(AEl/ | (I',1) € flow(c)} i)thervlvr;lse(C)
pu(E) = (E\ kilag(B")) U genag(B")

Example (AE equation system)

c=[x := atb]!; Equations:
[y := axb]?; ﬁEl :2 B B e
hil > a+b]® d 2 = P1(Ak1) = ALy
PO AR AR N (AR
[1= arb] = (AE2 U {axb}) N (AE; U {a+b})
1= a AE, = <p3(AE3) = AE3 U {a+b}

AEs = ¢4(AE4) = AE; \ {a+b, a*b,a+1}
L€ L, kilae(B") genae(BY)

1 0 {a+b}
2 0 {a*b}
3 0 {a+b}
4 {a+b,axb,a+1})

5 0 {a+b}

m' Semantics and Verification of Software Winter semester 2008,/09 6

The Equation System

) . (0 if I = init(c)
Reminder: AE; = {ﬂ{wl'(AEl' (I',1) € flow(c)} otherwise

|
pr(E) = (E\ killag(B")) U genae(B")

Example (AE equation system)

c=[x := atb]!; Equations:
[y := a*b]?; ﬁ? :g B B e
hil > a+b]® d 2 = P1(Ak1) = ALy
b Ea e-iy a+12]14 . ' do AE3 = p3(AE2) N 5 (AEs)
p— = (AE; U {a%b}) N (AE; U {a+b})
X = a AE, = <p3(AE3) = AE; U {a+b}

AEs = @4(AE4) = AE4 \ {a+b,a*b,a+1}
L€ L, kilae(B) genag(BY)

1 0 {a+b} Solution: AE; =0
2 0 {a*b} AE; = {a+b}
3 0 {a+b} AE; = {a+b}
4 {a+b,axb,a+1} 1] AE; = {a+b}
5 0 {a+b} AE5 = 0)

m' Semantics and Verification of Software Winter semester 2008,/09 6

© Live Variables Analysis

Rm Semantics and Verification of Software ter semester 2008

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

m' Semantics and Verification of Software Winter semester 2008,/09

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

m' Semantics and Verification of Software Winter semester 2008,/09 8

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

o All variables considered to be live at the end of the program
(alternative: restriction to output variables)

m' Semantics and Verification of Software Winter semester 2008,/09 8

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

o All variables considered to be live at the end of the program
(alternative: restriction to output variables)

@ Can be used for Dead Code Elimination:
remove assignments to non-live variables

m' Semantics and Verification of Software Winter semester 2008,/09 8

An Example

Example 15.1 (Live Variables Analysis)

m' Semantics and Verification of Software Winter semester 2008,/09 9

An Example

Example 15.1 (Live Variables Analysis
I)

[y := 4]%; @ x not live at exit from label 1
x = 1]
if [y > 0]* then
[z := x]°
else
[z = y*y]%
[x := 2]

m' Semantics and Verification of Software Winter semester 2008,/09 9

An Example

Example 15.1 (Live Variables Analysis
I)

[y := 4];: @ x not live at exit from label 1
[fo [Y- >1]Oj4 then o y live at exit from 2
else
[z := y*yl®;
[x = 2]7

m' Semantics and Verification of Software Winter semester 2008,/09

An Example

Example 15.1 (Live Variables Analysis)

[y := 4]§§ @ x not live at exit from label 1
[le [y= >1]O] 4 then @ y live at exit from 2
[z := x]° @ x live at exit from 3
else
[z = y*y]%;
x := 2]

m' Semantics and Verification of Software Winter semester 2008,/09

An Example

Example 15.1 (Live Variables Analysis)

[y := 4]§§ @ x not live at exit from label 1
[le [y= >1]O] 4 then @ y live at exit from 2

[z := x)° @ x live at exit from 3
elSZe I @ z live at exits from 5 and 6
[X[. Z]7y yl"s

m' Semantics and Verification of Software Winter semester 2008,/09

An Example

Example 15.1 (Live Variables Analysis)

[y := 4]3, @ x not live at exit from label 1
[le [y— >1]O]4 then @ y live at exit from 2
[z := x]5 @ x live at exit from 3
else . o z live at exits from 5 and 6
Ix [Z_ ;]7Y*Y] ’ @ possible optimization: remove [x := 2!

m' Semantics and Verification of Software Winter semester 2008,/09

Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

Rm Semantics and Verification of Software Winter semester 2008,/09 10

Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

o Formally: kill,y : Block. — 2% is defined by
ki||Lv([Skip]l) =10
killoy ([:= a]') := {x}
killpy ([b]1) == 0

Rm Semantics and Verification of Software Winter semester 2008,/09

10

Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

o Formally: kiIILV Blorkc — 2Vere is defined by
kIIILV([sklp]) =

killoy ([z]l) { }
klllLv([]) @

o Every reading access generates a live variable

Rm Semantics and Verification of Software Winter semester 2008,/09 10

Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

o Formally: kill\y : Block. — 2V is defined by
ki||Lv([Skip]l) =10
killoy ([:= a]') := {x}
killpy ([b]1) == 0
o Every reading access generates a live variable
o Formally: gen,y : Block. — 2"« is defined by
genag([skip]') == 0
genae([z :=a)') := FV(a)
genae([B]') == FV

Rm Semantics and Verification of Software Winter semester 2008,/09

Formalizing Live Variables Analysis II

Example 15.2 (kill,y/gen,y functions)

m' Semantics and Verification of Software Winter semester 2008,/09 11

Formalizing Live Variables Analysis II

Example 15.2 (kill,y/gen,y functions)

e=[x=2]5; o Var. = {x,y,z}
ly := 4]?;
= o= 1P;
if [y > 0]* then
= o= P
else
[z := y*y]%;
[x := 2]

m' Semantics and Verification of Software Winter semester 2008,/09 11

Formalizing Live Variables Analysis II

Example 15.2 (kill,y/gen,y functions)

c=[x := 2)%; o Var. ={x,y,z}

[y = 43; o [€ L. killy (B genyy, (BY)

[x := 1]3; 1 {x} 0

if [y > 0]* then 2 {y} 0

[z := x]° 3 {x} 0

else 4 0 {y}

[z = y*yl°; 5 {z} {x}

[x := 2" 6 {z} {y}

7 {x} {z}

m Semantics and Verification of Software Winter semester 2008,/09 11

The Equation System I

@ For each [€ L., LV; C Var,. represents the set of live variables at
the exit of block B!

Rm Semantics and Verification of Software Winter semester 2008,/09 12

The Equation System I

@ For each [€ L., LV; C Var,. represents the set of live variables at
the exit of block B!

@ Formally, for a program ¢ € C'md with isolated exits:

LV, = Var, ifl e final(c)
EZ Y ULor (V) | (1,17) € flow(c)} otherwise

where oy : 2V0e — 2VaTe denotes the transfer function of block
BY, given by

or(V) := (V \ killy (B")) U geny (BY)

Rm Semantics and Verification of Software Winter semester 2008,/09

The Equation System I

@ For each [€ L., LV; C Var,. represents the set of live variables at
the exit of block B!

@ Formally, for a program ¢ € C'md with isolated exits:

LV, = Var, ifl e final(c)
EZ Y ULor (V) | (1,17) € flow(c)} otherwise

where oy : 2V0e — 2VaTe denotes the transfer function of block
BY, given by
(V) = (V \ killoy (B")) U genyy (BY)
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: |J in equation for LV,
flow-sensitive: results depending on order of assignments

Rm Semantics and Verification of Software Winter semester 2008,/09

The Equation System I

@ For each [€ L., LV; C Var,. represents the set of live variables at
the exit of block B!

@ Formally, for a program ¢ € C'md with isolated exits:

LV, = Var, ifl e final(c)
EZ Y ULor (V) | (1,17) € flow(c)} otherwise

where oy : 2V0e — 2VaTe denotes the transfer function of block
BY, given by
(V) = (V \ killoy (B")) U genyy (BY)
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: |J in equation for LV,

flow-sensitive: results depending on order of assignments
o Later: solution not necessarily unique

= choose least one

Rm Semantics and Verification of Software Winter semester 2008,/09

The Equation System II

Var, if [€ final(c)

Reminder: Lv; = {U{soz/(LVl’ (1,I') € flow(c)} otherwise

|
v (V) = (V \ killag(B")) U genae(B")

Rm Semantics and Verification of Software Winter semester 2008,/09 13

The Equation System II

] . | Var, if I € final(c)
Reminder: Lv; = {U{QDN(LVV (1,I') € flow(c)} otherwise

|
v (V) = (V \ killag(B")) U genae(B")

Example 15.3 (LV equation system)

m' Semantics and Verification of Software Winter semester 2008,/09 13

The Equation System II

] . | Var, if I € final(c)
Reminder: Lv; = {U{QDN(LVV) (1,I') € flow(c)} otherwise

|
v (V) = (V \ killag(B")) U genae(B")

Example 15.3 (LV equation system)

Semantics and Verification of Software Winter semester 2008,/09 13

The Equation System II

] . | Var, if I € final(c)
Reminder: Lv; = {U{QDN(LVV) (1,I') € flow(c)} otherwise

|
pu (V) = (V \ killag(B")) U genae(B")

Example 15.3 (LV equation system)

Semantics and Verification of Software Winter semester 2008,/09 13

The Equation System II

] . | Var, if I € final(c)
Reminder: LV, = {U{@l,(LVl)| (V) € flow(c)} otherwise

|
pu (V) = (V \ killag(B")) U genae(B")

Example 15.3 (LV equation system)

) =
i A
>) =LV U{y}
[Z := X]5 LV, = @5(LV5) U QOG(LVG)
else . = ((LVs \ {z}) U{x}) U ((LVs \ {z}) U {y})
[z = y*y]°; Vs = p7(LV7) = (LV7 \ {x}) U{z}
[x := 2]” |I:¥5 = <{p7(LV7}? = (Lv7 \ {x}) u{z}
I € L, killy(B') gen,y (B! 7= B
1 {x(} L L\é() Solution: LV; =0
2 {v} 0 Vo = {y}
3 {x} 0 LVs = {x,y}
4 0 {v} LV, = {x,y}
5 {z} {x} LVs = {y,z}
6 {z} {y} Ve = {y, 2z}
7 {x} {z} V7 = {x,y,2}
m' Semantics and Verification of Software Ninter semester 2008/09 13

© Heading for a Dataflow Analysis Framework

Rm Semantics and Verification of Software ter semester 2008

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities

Rm Semantics and Verification of Software Winter semester 2008,/09 15

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities

— Look for underlying framework

Rm Semantics and Verification of Software Winter semester 2008,/09 15

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
— Look for underlying framework

@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Rm Semantics and Verification of Software Winter semester 2008,/09 15

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
— Look for underlying framework
@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

o Overall pattern: for c € CUmd and [€ L., the analysis
information (Al) is described by equations of the form

Al — {L ifleE
PV L o (Aly) | (1) € FY - otherwise
where
o ¢ specifies the initial analysis information
o E is {init(c)} or final(c)
o JisNorU
e ¢ denotes the transfer function of block BY
o Fis flow(c) or flow™(c) (:= {(I',1) | (1, 1) € flow(c)})

Rm Semantics and Verification of Software Winter semester 2008,/09

Characterization of Analyses

o Direction of information flow:
o forward:
o F = flow(c)
@ Al; concerns entry of B!
9 c has isolated entry

o backward:
o F = flow™(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

Rm Semantics and Verification of Software Winter semester 2008,/09 16

Characterization of Analyses

o Direction of information flow:
o forward:
o F = flow(c)
@ Al; concerns entry of B!
9 c has isolated entry

@ backward:
o F = flow™(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

o Quantification over paths:

e may:
o LU=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
o LI=nN
@ property satisfied by all paths
@ interested in greatest solution (later)

Rm Semantics and Verification of Software Winter semester 2008/09 16

	Repetition: Dataflow Analysis
	Live Variables Analysis
	Heading for a Dataflow Analysis Framework

