
Semantics and Verification of Software

Lecture 15: Dataflow Analysis II
(Available Expressions & Live Variables)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Repetition: Dataflow Analysis

2 Live Variables Analysis

3 Heading for a Dataflow Analysis Framework

Semantics and Verification of Software Winter semester 2008/09 2

Labelled Programs

Goal: localization of analysis information
Dataflow information will be associated with

skip statements
assignments
tests in conditionals (if) and loops (while)

These constructs will be called blocks.

Assume set of labels L with meta variable l ∈ L

(usually L = N)

Definition (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

c ::= [skip]l | [x := a]l | c1;c2 |
if [b]l then c1 else c2 | while [b]l do c ∈ Cmd

Here all labels in a statement c ∈ Cmd are assumed to be distinct.

Semantics and Verification of Software Winter semester 2008/09 3

Representing Control Flow

Example

c = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

true

false

Semantics and Verification of Software Winter semester 2008/09 4

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Semantics and Verification of Software Winter semester 2008/09 5

The Equation System

Reminder: AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

ϕl′ (E) = (E \ killAE(Bl
′

)) ∪ genAE(Bl
′

)

Example (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Lc killAE(Bl) genAE(Bl)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Semantics and Verification of Software Winter semester 2008/09 6

Outline

1 Repetition: Dataflow Analysis

2 Live Variables Analysis

3 Heading for a Dataflow Analysis Framework

Semantics and Verification of Software Winter semester 2008/09 7

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

All variables considered to be live at the end of the program
(alternative: restriction to output variables)

Can be used for Dead Code Elimination:
remove assignments to non-live variables

Semantics and Verification of Software Winter semester 2008/09 8

An Example

Example 15.1 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Semantics and Verification of Software Winter semester 2008/09 9

Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killLV : Block c → 2Varc is defined by
killLV([skip]l) := ∅

killLV([x := a]l) := {x}
killLV([b]l) := ∅

Every reading access generates a live variable

Formally: genLV : Block c → 2Varc is defined by
genAE([skip]l) := ∅

genAE([x := a]l) := FV (a)
genAE([b]l) := FV (b)

Semantics and Verification of Software Winter semester 2008/09 10

Formalizing Live Variables Analysis II

Example 15.2 (killLV/genLV functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}

l ∈ Lc killLV(Bl) genLV(Bl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

Semantics and Verification of Software Winter semester 2008/09 11

The Equation System I

For each l ∈ Lc, LVl ⊆ Var c represents the set of live variables at
the exit of block Bl

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{

Var c if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

where ϕl′ : 2Varc → 2Varc denotes the transfer function of block
Bl

′

, given by
ϕl′(V) := (V \ killLV(Bl

′

)) ∪ genLV(Bl
′

)

Characterization of analysis:

backward: starts in final(c) and proceeds upwards
may:

⋃

in equation for LVl

flow-sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose least one

Semantics and Verification of Software Winter semester 2008/09 12

The Equation System II

Reminder: LVl =

{

Var c if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

ϕl′ (V) = (V \ killAE(Bl
′

)) ∪ genAE(Bl
′

)

Example 15.3 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

l ∈ Lc killLV(Bl) gen
LV

(Bl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {y, z}
LV6 = {y, z}
LV7 = {x, y, z}

Semantics and Verification of Software Winter semester 2008/09 13

Outline

1 Repetition: Dataflow Analysis

2 Live Variables Analysis

3 Heading for a Dataflow Analysis Framework

Semantics and Verification of Software Winter semester 2008/09 14

Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Lc, the analysis
information (AI) is described by equations of the form

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

where

ι specifies the initial analysis information
E is {init(c)} or final(c)
⊔

is
⋂

or
⋃

ϕl′ denotes the transfer function of block Bl
′

F is flow(c) or flowR(c) (:= {(l′, l) | (l, l′) ∈ flow(c)})

Semantics and Verification of Software Winter semester 2008/09 15

Characterization of Analyses

Direction of information flow:
forward:

F = flow(c)
AIl concerns entry of B

l

c has isolated entry

backward:

F = flow
R(c)

AIl concerns exit of B
l

c has isolated exits

Quantification over paths:
may:

F

=
S

property satisfied by some path
interested in least solution (later)

must:
F

=
T

property satisfied by all paths
interested in greatest solution (later)

Semantics and Verification of Software Winter semester 2008/09 16

	Repetition: Dataflow Analysis
	Live Variables Analysis
	Heading for a Dataflow Analysis Framework

