Semantics and Verification of Software

Lecture 16: Dataflow Analysis III (The Framework)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Repetition: A Dataflow Analysis Framework

Rm Semantics and Verification of Software ter semester 2008

Available Expressions Analysis

@ For each [€ L., AE; C AEzp, represents the set of available
expressions at the entry of block B!
o Formally, for ¢ € CUmd with isolated entry:
AE, — {(ZJ if = init(c)
{er (AEy) | (I',1) € flow(c)} otherwise
where @y : 2487 — 2AFc denotes the transfer function of block
B, given by
o (A) == (A\ killag(B")) U genag(B")
o Characterization of analysis:
forward: starts in init(¢) and proceeds downwards
must: () in equation for AE,
flow-sensitive: results depending on order of assignments

o Later: solution not necessarily unique
—> choose greatest one

Rm Semantics and Verification of Software Winter semester 2008,/09

Live Variables Analysis

@ For each [€ L., LV; C Var,. represents the set of live variables at
the exit of block B!

@ Formally, for a program ¢ € C'md with isolated exits:

LV, = Var, ifl e final(c)
EZ Y ULor (V) | (1,17) € flow(c)} otherwise

where oy : 2V0e — 2VaTe denotes the transfer function of block
BY, given by
(V) = (V \ killoy (B")) U genyy (BY)
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: |J in equation for LV,

flow-sensitive: results depending on order of assignments
o Later: solution not necessarily unique

= choose least one

Rm Semantics and Verification of Software Winter semester 2008,/09

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
— Look for underlying framework
@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

o Overall pattern: for c € CUmd and [€ L., the analysis
information (Al) is described by equations of the form

Al — {L ifleE
PV L o (Aly) | (1) € FY - otherwise
where
o ¢ specifies the initial analysis information
o E is {init(c)} or final(c)
o JisNorU
e ¢ denotes the transfer function of block BY
o Fis flow(c) or flow™(c) (:= {(I',1) | (1, 1) € flow(c)})

Rm Semantics and Verification of Software Winter semester 2008,/09

Characterization of Analyses

o Direction of information flow:
o forward:
o F = flow(c)
@ Al; concerns entry of B!
9 c has isolated entry

@ backward:
o F = flow™(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

o Quantification over paths:

e may:
o LU=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
o LI=nN
@ property satisfied by all paths
@ interested in greatest solution (later)

Rm Semantics and Verification of Software Winter semester 2008/09

© Order-Theoretic Foundations

Rm Semantics and Verification of Software ter semester 2008

Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “degree of knowledge”.

Definition 16.1 (Partial order; repetition of Def. 6.1)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every dy,ds,ds € D,

reflexivity: dy C d
transitivity: d; C dy and do C d3 = dq C dj
antisymmetry: di E do and do C di = di = d»
It is called total if, in addition, always dy C do or do C dj.

@ (Available Expressions) (247%¢ D) is a (non-total) partial order
© (Live Variables) (2V%< C) is a (non-total) partial order

m' Semantics and Verification of Software Winter semester 2008,/09

Upper and Lower Bounds I

Definition 16.3 (Upper and lower bound)

Let (D,C) be a partial order and S C D.
QO An element d € D is called an upper/lower bound of S if
s C d/dC s for every s € S (notation: S C d/dC S).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d E d’ for every upper bound d’ of S
(notation: d = |95).
A lower bound d of S is called greatest lower bound (GLB) or

infimum of S if d’ C d for every lower bound d’ of S
(notation: d =[15).

m Semantics and Verification of Software Winter semester 2008,/09 9

Upper and Lower Bounds I1

Example 16.4

@ (Available Expressions) (D,C) = (2452Pc D)
Given Ay,..., A, C AExp,,

Q (Live Variables) (D,C) = (2", C)
Given V4,...,V,, C Var,,

Winter semester 2008,/09 10

m Semantics and Verification of Software

Complete Lattices I

Definition 16.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D
have least upper as well as greatest lower bounds. In this case,

L =10 =T]D and
T:=[0=_]D

denote the least and the greatest element of D, respectively.

@ (Available Expressions) (D,C) = (2452P¢ D) is a complete lattice
with | = AEzp. and T = ()

Q (Live Variables) (D,C) = (2V%<, C) is a complete lattice with
L =0and T = Var.

m' Semantics and Verification of Software Winter semester 2008,/09 11

Complete Lattices II

Lemma 16.7

For a partial order (D,C) the claims
Q (D,C) is a complete lattice,
Q cvery subset of D has a least upper bound, and

Q cvery subset of D has a greatest lower bound

are equivalent.

on the board

Semantics and Verification of Software Winter semester 2008,/09 12

Chains represent the approximation of the analysis information.

Definition 16.8 (Chain; repetition of Def. 6.4 and 6.6)

Let (D,C) be a partial order.
@ A subset S C D is called a chain in D if, for every s1,s3 € S,
s1E sz 0r s L sy
(that is, S is a totally ordered subset of D).
© (D, L) is called chain complete (CCPO) if each of its chains has a
least upper bound.

@ (D,) satisfies the Ascending Chain Condition (ACC) if each
ascending chain dy C dy C ... eventually stabilizes, i.e., there
exists n € N such that d, =d,1 = ...

m' Semantics and Verification of Software Winter semester 2008,/09

Chains 11

on the board

Every partial order that satisfies ACC is a CCPO.
O

@ (Available Expressions) (D,C) = (245%Pc, D) satisfies ACC since
AFzp, (unlike AFEzp) is finite

© (Live Variables) (D,C) = (2V%"<, C) satisfies ACC since Var,
(unlike Var) is finite

m Semantics and Verification of Software Winter semester 2008,/09 14

Monotonicity of Functions

Transfer functions formalize the impact of a block in the program on
the analysis information.

Definition 16.11 (Monotonicity; repetition of Def. 7.1)

Let (D,C) and (D’,C') be partial orders, and let F': D — D'. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

di Cdy = F(d1) C' F(d).

Example 16.12
@ (Available Expressions) (D,C) = (24F%¢, D)
Each transfer function ¢y (A) := (A \ killag(B")) U genpg(BY) is
monotonic
© (Live Variables) (D,C) = (2Ver, Q)
Each transfer function ¢y (V) := (V \ killoy (B")) U genyy (BY) is
monotonic

m' Semantics and Verification of Software Winter semester 2008,/09 15

Theorem 16.13 (Fixpoint Theorem; repetition of Thm. 7.7)

Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) := J{F" (U0) | n € N}
1s the least fixpoint of F.

Definition 16.14 (Continuity; repetition of Def. 7.5)

Let (D,C) and (D’,C') be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D',C")) if, for every
non-empty chain S C D,

F(US) =L F(S).

Corollary 16.15

Montonic functions on partial orders that satisfy ACC are continuous.

on the board O

m Semantics and Verification of Software Winter semester 2008,/09 16

© The Framework

Rm mantics and Verification of Software nter semes

Dataflow Systems I

Definition 16.16 (Dataflow system)

A dataflow system S = (L, E, F, (D,C),,) consists of

a finite set of (program) labels L (here: L),

a set of extremal labels E C L (here: {init(c)} or final(c)),
a flow relation F C L x L (here: flow(c) or flow*(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

@ an extremal value ¢ € D (for the extremal labels), and

©

¢ ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € L} of type
wr:D— D.

m' Semantics and Verification of Software Winter semester 2008,/09

Dataflow Systems 11

Example 16.17

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flow®(¢)

D 9AEzp, 9 Vare.

L 2 -

L N U

il AFExp, 0

L 0 Var,

Q1 pi(d) = (d\ kill(B")) U gen(B")

Semantics and Verification of Software Winter semester 2008,/09 19

	Repetition: A Dataflow Analysis Framework
	Order-Theoretic Foundations
	The Framework

