
Semantics and Verification of Software

Lecture 16: Dataflow Analysis III (The Framework)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/


Outline

1 Repetition: A Dataflow Analysis Framework

2 Order-Theoretic Foundations

3 The Framework

Semantics and Verification of Software Winter semester 2008/09 2



Available Expressions Analysis

For each l ∈ Lc, AEl ⊆ AExpc represents the set of available
expressions at the entry of block Bl

Formally, for c ∈ Cmd with isolated entry:

AEl =

{

∅ if l = init(c)
⋂

{ϕl′(AEl′) | (l′, l) ∈ flow(c)} otherwise

where ϕl′ : 2AExpc → 2AExpc denotes the transfer function of block
Bl

′

, given by
ϕl′(A) := (A \ killAE(Bl

′

)) ∪ genAE(Bl
′

)

Characterization of analysis:

forward: starts in init(c) and proceeds downwards
must:

⋂

in equation for AEl

flow-sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose greatest one

Semantics and Verification of Software Winter semester 2008/09 3



Live Variables Analysis

For each l ∈ Lc, LVl ⊆ Var c represents the set of live variables at
the exit of block Bl

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{

Var c if l ∈ final(c)
⋃

{ϕl′(LVl′) | (l, l′) ∈ flow(c)} otherwise

where ϕl′ : 2Varc → 2Varc denotes the transfer function of block
Bl

′

, given by
ϕl′(V ) := (V \ killLV(Bl

′

)) ∪ genLV(Bl
′

)

Characterization of analysis:

backward: starts in final(c) and proceeds upwards
may:

⋃

in equation for LVl

flow-sensitive: results depending on order of assignments

Later: solution not necessarily unique
=⇒ choose least one

Semantics and Verification of Software Winter semester 2008/09 4



Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Lc, the analysis
information (AI) is described by equations of the form

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

where

ι specifies the initial analysis information
E is {init(c)} or final(c)
⊔

is
⋂

or
⋃

ϕl′ denotes the transfer function of block Bl
′

F is flow(c) or flowR(c) (:= {(l′, l) | (l, l′) ∈ flow(c)})

Semantics and Verification of Software Winter semester 2008/09 5



Characterization of Analyses

Direction of information flow:
forward:

F = flow(c)
AIl concerns entry of B

l

c has isolated entry

backward:

F = flow
R(c)

AIl concerns exit of B
l

c has isolated exits

Quantification over paths:
may:

F

=
S

property satisfied by some path
interested in least solution (later)

must:
F

=
T

property satisfied by all paths
interested in greatest solution (later)

Semantics and Verification of Software Winter semester 2008/09 6



Outline

1 Repetition: A Dataflow Analysis Framework

2 Order-Theoretic Foundations

3 The Framework

Semantics and Verification of Software Winter semester 2008/09 7



Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “degree of knowledge”.

Definition 16.1 (Partial order; repetition of Def. 6.1)

A partial order (PO) (D,⊑) consists of a set D, called domain, and of
a relation ⊑ ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 ⊑ d1

transitivity: d1 ⊑ d2 and d2 ⊑ d3 =⇒ d1 ⊑ d3

antisymmetry: d1 ⊑ d2 and d2 ⊑ d1 =⇒ d1 = d2

It is called total if, in addition, always d1 ⊑ d2 or d2 ⊑ d1.

Example 16.2

1 (Available Expressions) (2AExpc ,⊇) is a (non-total) partial order

2 (Live Variables) (2Varc ,⊆) is a (non-total) partial order

Semantics and Verification of Software Winter semester 2008/09 8



Upper and Lower Bounds I

Definition 16.3 (Upper and lower bound)

Let (D,⊑) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper/lower bound of S if
s ⊑ d/d ⊑ s for every s ∈ S (notation: S ⊑ d/d ⊑ S).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d ⊑ d′ for every upper bound d′ of S

(notation: d =
⊔

S).

3 A lower bound d of S is called greatest lower bound (GLB) or
infimum of S if d′ ⊑ d for every lower bound d′ of S

(notation: d =
d

S).

Semantics and Verification of Software Winter semester 2008/09 9



Upper and Lower Bounds II

Example 16.4

1 (Available Expressions) (D,⊑) = (2AExpc ,⊇)
Given A1, . . . , An ⊆ AExpc,

⊔

{A1, . . . , An} =
⋂

{A1, . . . , An} andd
{A1, . . . , An} =

⋃

{A1, . . . , An}

2 (Live Variables) (D,⊑) = (2Varc ,⊆)
Given V1, . . . , Vn ⊆ Var c,

⊔

{V1, . . . , Vn} =
⋃

{V1, . . . , Vn} andd
{V1, . . . , Vn} =

⋂

{V1, . . . , Vn}

Semantics and Verification of Software Winter semester 2008/09 10



Complete Lattices I

Definition 16.5 (Complete lattice)

A complete lattice is a partial order (D,⊑) such that all subsets of D

have least upper as well as greatest lower bounds. In this case,

⊥ :=
⊔

∅ =
d

D and
⊤ :=

d
∅ =

⊔

D

denote the least and the greatest element of D, respectively.

Example 16.6

1 (Available Expressions) (D,⊑) = (2AExpc ,⊇) is a complete lattice
with ⊥ = AExpc and ⊤ = ∅

2 (Live Variables) (D,⊑) = (2Varc ,⊆) is a complete lattice with
⊥ = ∅ and ⊤ = Var c

Semantics and Verification of Software Winter semester 2008/09 11



Complete Lattices II

Lemma 16.7

For a partial order (D,⊑) the claims

1 (D,⊑) is a complete lattice,

2 every subset of D has a least upper bound, and

3 every subset of D has a greatest lower bound

are equivalent.

Proof.

on the board

Semantics and Verification of Software Winter semester 2008/09 12



Chains I

Chains represent the approximation of the analysis information.

Definition 16.8 (Chain; repetition of Def. 6.4 and 6.6)

Let (D,⊑) be a partial order.

1 A subset S ⊆ D is called a chain in D if, for every s1, s2 ∈ S,
s1 ⊑ s2 or s2 ⊑ s1

(that is, S is a totally ordered subset of D).

2 (D,⊑) is called chain complete (CCPO) if each of its chains has a
least upper bound.

3 (D,⊑) satisfies the Ascending Chain Condition (ACC) if each
ascending chain d1 ⊑ d2 ⊑ . . . eventually stabilizes, i.e., there
exists n ∈ N such that dn = dn+1 = . . .

Semantics and Verification of Software Winter semester 2008/09 13



Chains II

Corollary 16.9

Every partial order that satisfies ACC is a CCPO.

Proof.

on the board

Example 16.10

1 (Available Expressions) (D,⊑) = (2AExpc ,⊇) satisfies ACC since
AExpc (unlike AExp) is finite

2 (Live Variables) (D,⊑) = (2Varc ,⊆) satisfies ACC since Var c

(unlike Var) is finite

Semantics and Verification of Software Winter semester 2008/09 14



Monotonicity of Functions

Transfer functions formalize the impact of a block in the program on
the analysis information.

Definition 16.11 (Monotonicity; repetition of Def. 7.1)

Let (D,⊑) and (D′,⊑′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,⊑) and (D′,⊑′)) if, for every d1, d2 ∈ D,

d1 ⊑ d2 =⇒ F (d1) ⊑
′ F (d2).

Example 16.12

1 (Available Expressions) (D,⊑) = (2AExpc ,⊇)
Each transfer function ϕl′(A) := (A \ killAE(Bl′)) ∪ genAE(Bl′) is
monotonic

2 (Live Variables) (D,⊑) = (2Varc ,⊆)
Each transfer function ϕl′(V ) := (V \ killLV(Bl

′

)) ∪ genLV(Bl
′

) is
monotonic

Semantics and Verification of Software Winter semester 2008/09 15



Fixpoints

Theorem 16.13 (Fixpoint Theorem; repetition of Thm. 7.7)

Let (D,⊑) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{Fn (
⊔

∅) | n ∈ N}
is the least fixpoint of F .

Definition 16.14 (Continuity; repetition of Def. 7.5)

Let (D,⊑) and (D′,⊑′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,⊑) and (D′,⊑′)) if, for every
non-empty chain S ⊆ D,

F (
⊔

S) =
⊔

F (S).

Corollary 16.15

Montonic functions on partial orders that satisfy ACC are continuous.

Proof.

on the board

Semantics and Verification of Software Winter semester 2008/09 16



Outline

1 Repetition: A Dataflow Analysis Framework

2 Order-Theoretic Foundations

3 The Framework

Semantics and Verification of Software Winter semester 2008/09 17



Dataflow Systems I

Definition 16.16 (Dataflow system)

A dataflow system S = (L, E, F, (D,⊑), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L × L (here: flow(c) or flowR(c)),

a complete lattice (D,⊑) that satisfies ACC
(with LUB operator

⊔

and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.

Semantics and Verification of Software Winter semester 2008/09 18



Dataflow Systems II

Example 16.17

Problem Available Expressions Live Variables

E {init(c)} final(c)
F flow(c) flowR(c)
D 2AExpc 2Varc

⊑ ⊇ ⊆
⊔ ⋂ ⋃

⊥ AExpc ∅
ι ∅ Var c

ϕl ϕl(d) = (d \ kill(Bl)) ∪ gen(Bl)

Semantics and Verification of Software Winter semester 2008/09 19


	Repetition: A Dataflow Analysis Framework
	Order-Theoretic Foundations
	The Framework

