Semantics and Verification of Software

Lecture 17: Dataflow Analysis IV (Equation Solving)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

© Repetition: The Dataflow Analysis Framework

Rm Semantics and Verification of Software ter semester 2008

Complete Lattices

Definition (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D
have least upper as well as greatest lower bounds. In this case,

L =10 =T]D and
T:=[0=_]D

denote the least and the greatest element of D, respectively.

@ (Available Expressions) (D,C) = (2452P¢ D) is a complete lattice
with | = AEzp. and T = ()

Q (Live Variables) (D,C) = (2V%<, C) is a complete lattice with
L =0and T = Var.

m' Semantics and Verification of Software Winter semester 2008,/09 3

Chains represent the approximation of the analysis information.

Definition (Chain; repetition of Def. 6.4 and 6.6)

Let (D,C) be a partial order.

@ A subset S C D is called a chain in D if, for every s1,s € S,
51 E sy ors3 L sy
(that is, S is a totally ordered subset of D).
@ (D,C) is called chain complete (CCPO) if each of its chains has a
least upper bound.

@ (D,) satisfies the Ascending Chain Condition (ACC) if each
ascending chain d; C do C ... eventually stabilizes, i.e., there

exists n € N such that d, =d,11 = ...

Complete lattices are CCPOs.

m' Semantics and Verification of Software Winter semester 2008,/09 4

Monotonicity of Functions

Transfer functions formalize the impact of a block in the program on
the analysis information.

Definition (Monotonicity; repetition of Def. 7.1)

Let (D,C) and (D’,C') be partial orders, and let F': D — D'. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

di Cdy = F(d1) C' F(d).

Example
@ (Available Expressions) (D,C) = (24F%¢, D)
Each transfer function ¢y (A) := (A \ kiIIAE(Bl/)) U genAE(Bl/) is
monotonic
© (Live Variables) (D,C) = (2", C)
Each transfer function ¢y (V) := (V' \ ki|||_v(Bl,)) U genLV(Bl,) is
monotonic

m' Semantics and Verification of Software Winter semester 2008,/09 5

Theorem (Fixpoint Theorem; repetition of Thm. 7.7)

Let (D,C) be a CCPO and F : D — D continuous. Then
fix(F) :== J{F" (U0) | n € N}
is the least fixpoint of F.

Definition (Continuity; repetition of Def. 7.5)

Let (D,C) and (D’,C") be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D',C")) if, for every
non-empty chain S C D,

FUS) =L F(S).

Monotonic functions on partial orders that satisfy ACC are continuous.

m' Semantics and Verification of Software Winter semester 2008,/09 6

Dataflow Systems I

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,C),,) consists of

a finite set of (program) labels L (here: L),

a set of extremal labels E C L (here: {init(c)} or final(c)),
a flow relation F C L x L (here: flow(c) or flow*(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

@ an extremal value ¢ € D (for the extremal labels), and

©

¢ ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € L} of type
wr:D— D.

m' Semantics and Verification of Software Winter semester 2008,/09

Dataflow Systems 11

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flow®(¢)

D 9AEzp, 9 Vare.

L 2 -

L N U

il AFExp, 0

L 0 Var,

Q1 pi(d) = (d\ kill(B")) U gen(B")

Semantics and Verification of Software Winter semester 2008,/09 8

© Solving Dataflow Equation Systems

Rm Semantics and Verification of Software ter semester 2008

The Equation System

Definition 17.1 (Dataflow equation system)

Let S = (L,E,F,(D,C),t,¢) be a dataflow system. S defines the
following equation system over the set of variables {Al; | [€ L}:

Al — L ifleFE
L LI{ew(Aly) | (I',1) € F} otherwise

m' Semantics and Verification of Software Winter semester 2008,/09

The Functional

Just as in the denotational semantics of while loops, the equation
system determines a functional whose fixpoints are exactly the
solutions of the equation system.

Definition 17.2 (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,C), ¢,)
induces a functional

$g: D" — D" : (dyy,....dy,) — (dy,....,d})
where L = {ly,...,l,} and, for each 1 <i <mn,

d = 2 ifl; e &
L e (dr) | (,1;) € F} o otherwise

m Semantics and Verification of Software Winter semester 2008,/09 11

Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

Rm Semantics and Verification of Software Winter semester 2008,/09 12

Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

@ (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g

Rm Semantics and Verification of Software Winter semester 2008,/09 12

Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined
@ (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g
o If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)

Rm Semantics and Verification of Software Winter semester 2008,/09 12

Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

@ (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g
o If (D,C) is a complete lattice satisfying ACC, then so is (D", C")

(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D
= &g monotonic in D"

©

Rm Semantics and Verification of Software Winter semester 2008,/09 12

Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

(di,...,dy) is a solution of the equation system iff it is a fixpoint
of &g

If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D

= &g monotonic in D"

©

©

Thus the (least) fixpoint is effectively computable by iteration:
fix(@s) = |_[{@5(Lpn) | i€ N}

where Lpn = (Lp,...,Lp)
—_—————

n times

Rm Semantics and Verification of Software Winter semester 2008,/09

Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

(di,...,dy) is a solution of the equation system iff it is a fixpoint
of &g

If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D

= &g monotonic in D"

©

©

Thus the (least) fixpoint is effectively computable by iteration:
fix(@s) = |_[{@5(Lpn) | i€ N}

where J_Dn = (J_D, ey J_D)
n times
o If maximal length of chains in D is m
—> maximal length of chains in D" is m - n
= fixpoint iteration requires at most m - n steps

Rm Semantics and Verification of Software Winter semester 2008,/09

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

a+b]!;

y 1= asbP;

while [y > a+b]? do
[a := a+1]*;
[x := a+b]®

(9}
Il
=
1

m' Semantics and Verification of Software Winter semester 2008,/09 13

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

m' Semantics and Verification of Software Winter semester 2008,/09 13

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

i| 1 2 3 1 5
0| AEzp, AEzp, AExzp., AFxp. AEzp,

m' Semantics and Verification of Software Winter semester 2008,/09

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

1 1 2 3 4)
0| AExp, AExp. AFEzp, AFExp. AEzxp,
1 0 AExp, AExp, AExp, 0

m' Semantics and Verification of Software Winter semester 2008,/09

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

0} 1 2 3 4)
0| AExp, AExp, AFzp, AExp. AExp,
1 0 AEzp, AFExp, AEap, 0
2 0 {a+b} {a+b} AFuzp, 0

m' Semantics and Verification of Software Winter semester 2008,/09

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

1 2 3 4)
AFExp, AExp. AFEzp, AFExp. AEzp,
0 AEzp, AFExp, AEap, 0
0 {a+b} {a+b} AFuzp, 0

0 {a+b} {a+b} {a+b} 0

W N = Of =,

m' Semantics and Verification of Software Winter semester 2008,/09

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

1 2 3 4)
AFExp, AExp. AFEzp, AFExp. AEzp,
AEzp, AFExp, AEap, 0
{a+b} {a+b} AFuzp, 0
fa*b] {atb} {at0] 0
{a+b} {a+b} {a+b} 0

BN = O .

S S=

m' Semantics and Verification of Software Winter semester 2008,/09

Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:
x o= 2)lsly o= 4l
[x := 15
if [y > 0]* then
[z = =P
else
[z = y*yl°;
x 1= o

m' Semantics and Verification of Software Winter semester 2008,/09 14

Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program: Equation system:
== 25 = B = Vo \ {y}
[x := 1]3; LV = V3 \ {x}
if [y > 0]* then V3 = LV4 U {y}
o = 2" Vs = (V5 \ {z}) U {x}) U (V6 \ {=}) U {3})
else LVs = (LV7 \ {x}) U {z}
z := y*y]6; Ve = (LV7 \ {x}) U {z}
x := 2|7 V7 = {x,y,z}

m' Semantics and Verification of Software Winter semester 2008,/09 14

Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program: Equation system:
[x := 2%y = 4% Vi=LVa\{y}
[x := 1]3; LV = V3 \ {x}
if [y > 0]* then V3 = LV4 U {y}
o e of LV, = (V3 \ {2}) U{x}) U (V6 \ {z}) U {y})
else LVs = (LV7 \ {x}) U{z}
S Vg = (V7 \ {x}) U {2}
[x := 2" V7 = {x,y,2}
Fixpoint iteration:
ij1 2 3 4 5 6 7
00 0 0 0 0 0 7
m' Semantics and Verification of Software Winter semester 2008,/09 14

Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program: Equation system:
[x := 2]';]y := 4]?; LVi=Ls\{y}
[x := 1]3; LVy = LV3 \ {x}
if [y > 0]* then V3 = LV4 U {y}
o i 4]f LVy = (V5 \ {z}) U {x}) U (V6 \ {z}) U {v})
else LVs = (LV7 \ {x}) U{z}
[z = y*y]6; LVG = (LV7 \ {X}) U {Z}
[X =]7 LV7 = {X7Y7Z}
Fixpoint iteration:
ij1 2 3 4 5 6 7
0[0 0 0 0 0 0 0
Lo 0 {yr =y {2zt {z} {xyz}
m' Semantics and Verification of Software Winter semester 2008,/09 14

Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program: Equation system:
[x := 2]1;[y = 4]2; LV = V2 \ {y}
[X = 1]3; LV2 = LV3 \ {X}
if [y > 0]* then V3 = LV4 U {y}
o = xf Vs = (V5 \ {2}) U {x}) U (V6 \ {=}) U {y})
else LVs = (LV7 \ {x}) U{z}
[z := y*y]%; Ve = (LV7 \ {x}) U {z}
x := 2|7 V7 = {x,y,z}

Fixpoint iteration:

1 2 3 4 5 6 7
0 0 0 0 0 0 0
0 0 {y} {xyr {z} {z} {xvyz}
0 {y} {=y} {xyt {v.z2} {v.z} {xyz}

)
0
1
2

m' Semantics and Verification of Software Winter semester 2008,/09 14

Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program: Equation system:
== 25 = B = Vo \ {y}
[x := 1]3; LV = V3 \ {x}
if [y > 0]* then V3 = LV4 U {y}
o = 2" Vs = (V5 \ {z}) U {x}) U (V6 \ {=}) U {3})
else LVs = (LV7 \ {x}) U {z}
z := y*y]6; Ve = (LV7 \ {x}) U {z}
x := 2|7 V7 = {x,y,z}

Fixpoint iteration:

il1 2 3 4 5 6 7
0 0 0 0 0 0
0 {y} {xyr {z} A{z} {xvyz}
v} {=vy} {xy} {v.z} {v.z} {xvyz}
v} {=vy} {xy} {v.z} {v.z} {xvyz}

m' Semantics and Verification of Software /inter semester 2008/09 14

© Uniqueness of Solutions

Rm Semantics and Verification of Software inter semester 2008

Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Rm Semantics and Verification of Software Winter semester 2008,/09 16

Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5
@ Available Expressions: consider
2 = xy]';
while [true]? do
[skip]3;

Semantics and Verification of Software Winter semester 2008,/09 16

Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5

@ Available Expressions: consider

[z := x+y]'; = AE; =0
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]®; AE; = AE,

Semantics and Verification of Software Winter semester 2008,/09 16

Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5

@ Available Expressions: consider

[Z c= X+y]1; — AE1 = @
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]?’; AE3; = AE,
— AE1 = @
AE; = {X+y} N AE;
AE; = AE,

Semantics and Verification of Software Winter semester 2008,/09

Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

IS
|

Example 17

@ Available Expressions: consider

[z := x+y]l; — AE; =10
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]®; AEs = AE;
— AE; =)
AEs — {x+y} N AE;
AE; = AE,

— Solutions: AE; = AEy = AE3 =0 or
AE; = @,AEQ = AE;3 = {X+y}

Semantics and Verification of Software Winter semester 2008,/09

Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

IS
|

Example 17

@ Available Expressions: consider

[z := x+y]l; — AE; =10
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]g; AE; = AEy
— AE; =10
AE; = {X+y} N AE3
AE3 = AE;

— Solutions: AE; = AEy = AE3 =0 or
AE; = @,AEQ = AE;3 = {X+y}

Here: greatest solution {x+y} (maximal potential for optimization)

Semantics and Verification of Software Winter semester 2008,/09 16

Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

IS
|

Example 17

@ Available Expressions: consider

[z := x+y]l; — AE; =10
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]g; AE; = AEy
— AE; =10
AE; = {X+y} N AE3
AE3 = AE;

— Solutions: AE; = AEy = AE3 =0 or
AE; = @,AEQ = AE;3 = {X+y}

Here: greatest solution {x+y} (maximal potential for optimization)

@ Live Variables: see Exercise 9.3

Semantics and Verification of Software Winter semester 2008,/09 16

	Repetition: The Dataflow Analysis Framework
	Solving Dataflow Equation Systems
	Uniqueness of Solutions

