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Complete Lattices

Definition (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D
have least upper as well as greatest lower bounds. In this case,

L =10 =T]D and
T:=[0=_]D

denote the least and the greatest element of D, respectively.

@ (Available Expressions) (D,C) = (2452P¢ D) is a complete lattice
with | = AEzp. and T = ()

Q (Live Variables) (D,C) = (2V%<, C) is a complete lattice with
L =0and T = Var.
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Chains represent the approximation of the analysis information.

Definition (Chain; repetition of Def. 6.4 and 6.6)

Let (D,C) be a partial order.

@ A subset S C D is called a chain in D if, for every s1,s € S,
51 E sy ors3 L sy
(that is, S is a totally ordered subset of D).
@ (D,C) is called chain complete (CCPO) if each of its chains has a
least upper bound.

@ (D, ) satisfies the Ascending Chain Condition (ACC) if each
ascending chain d; C do C ... eventually stabilizes, i.e., there

exists n € N such that d, =d,11 = ...

Complete lattices are CCPOs.
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Monotonicity of Functions

Transfer functions formalize the impact of a block in the program on
the analysis information.

Definition (Monotonicity; repetition of Def. 7.1)

Let (D,C) and (D’,C') be partial orders, and let F': D — D'. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

di Cdy = F(d1) C' F(d).

Example
@ (Available Expressions) (D,C) = (24F%¢, D)
Each transfer function ¢y (A) := (A \ kiIIAE(Bl/)) U genAE(Bl/) is
monotonic
© (Live Variables) (D,C) = (2", C)
Each transfer function ¢y (V) := (V' \ ki|||_v(Bl,)) U genLV(Bl,) is
monotonic
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Theorem (Fixpoint Theorem; repetition of Thm. 7.7)

Let (D,C) be a CCPO and F : D — D continuous. Then
fix(F) :== J{F" (U0) | n € N}
is the least fixpoint of F.

Definition (Continuity; repetition of Def. 7.5)

Let (D,C) and (D’,C") be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D',C")) if, for every
non-empty chain S C D,

FUS) =L F(S).

Monotonic functions on partial orders that satisfy ACC are continuous.
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Dataflow Systems I

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,C),, ) consists of

a finite set of (program) labels L (here: L),

a set of extremal labels E C L (here: {init(c)} or final(c)),
a flow relation F C L x L (here: flow(c) or flow*(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

@ an extremal value ¢ € D (for the extremal labels), and

©

¢ ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € L} of type
wr:D— D.
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Dataflow Systems 11

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flow®(¢)

D 9AEzp, 9 Vare.

L 2 -

L N U

il AFExp, 0

L 0 Var,

Q1 pi(d) = (d\ kill(B")) U gen(B")
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© Solving Dataflow Equation Systems
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The Equation System

Definition 17.1 (Dataflow equation system)

Let S = (L,E,F,(D,C),t,¢) be a dataflow system. S defines the
following equation system over the set of variables {Al; | [ € L}:

Al — L ifleFE
L LI{ew(Aly) | (I',1) € F} otherwise
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The Functional

Just as in the denotational semantics of while loops, the equation
system determines a functional whose fixpoints are exactly the
solutions of the equation system.

Definition 17.2 (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,C), ¢, )
induces a functional

$g: D" — D" : (dyy,....dy,) — (dy,....,d})
where L = {ly,...,l,} and, for each 1 <i <mn,

d = 2 ifl; e &
L e (dr) | (,1;) € F} o otherwise
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

@ (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined
@ (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g
o If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

@ (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g
o If (D,C) is a complete lattice satisfying ACC, then so is (D", C")

(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D
= &g monotonic in D"

©
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

(di,...,dy) is a solution of the equation system iff it is a fixpoint
of &g

If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D

= &g monotonic in D"

©

©

Thus the (least) fixpoint is effectively computable by iteration:
fix(@s) = |_[{@5(Lpn) | i€ N}

where Lpn = (Lp,...,Lp)
—_—————

n times
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

(di,...,dy) is a solution of the equation system iff it is a fixpoint
of &g

If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D

= &g monotonic in D"

©

©

Thus the (least) fixpoint is effectively computable by iteration:
fix(@s) = |_[{@5(Lpn) | i€ N}

where J_Dn = (J_D, ey J_D)
n times
o If maximal length of chains in D is m
—> maximal length of chains in D" is m - n
= fixpoint iteration requires at most m - n steps
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Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

a+b]!;

y 1= asbP;

while [y > a+b]? do
[a := a+1]*;
[x := a+b]®

(9}
Il
=
1
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Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}
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Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

i| 1 2 3 1 5
0| AEzp, AEzp, AExzp., AFxp. AEzp,
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Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

1 1 2 3 4 )
0| AExp, AExp. AFEzp, AFExp. AEzxp,
1 0 AExp, AExp, AExp, 0
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Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

0} 1 2 3 4 )
0| AExp, AExp, AFzp, AExp. AExp,
1 0 AEzp, AFExp, AEap, 0
2 0 {a+b} {a+b} AFuzp, 0
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Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

1 2 3 4 )
AFExp, AExp. AFEzp, AFExp. AEzp,
0 AEzp, AFExp, AEap, 0
0 {a+b} {a+b} AFuzp, 0

0 {a+b} {a+b} {a+b} 0

W N = Of =,
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Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y .= a*b]2; AE;, = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
x := a+b]’® AEs; = AE4 \ {a+b, a*b,a+1}

Fixpoint iteration:

1 2 3 4 )
AFExp, AExp. AFEzp, AFExp. AEzp,
AEzp, AFExp, AEap, 0
{a+b} {a+b} AFuzp, 0
fa*b] {atb} {at0] 0
{a+b} {a+b} {a+b} 0

BN = O .

S S=

m' Semantics and Verification of Software Winter semester 2008,/09



Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:
x o= 2)lsly o= 4l
[x := 15
if [y > 0]* then
[z = =P
else
[z = y*yl°;
x 1= o
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Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program: Equation system:
== 25 = B = Vo \ {y}
[x := 1]3; LV = V3 \ {x}
if [y > 0]* then V3 = LV4 U {y}
o = 2" Vs = (V5 \ {z}) U {x}) U (V6 \ {=}) U {3})
else LVs = (LV7 \ {x}) U {z}
z := y*y]6; Ve = (LV7 \ {x}) U {z}
x := 2|7 V7 = {x,y,z}
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Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program: Equation system:
[x := 2%y = 4% Vi=LVa\{y}
[x := 1]3; LV = V3 \ {x}
if [y > 0]* then V3 = LV4 U {y}
o e of LV, = (V3 \ {2}) U{x}) U (V6 \ {z}) U {y})
else LVs = (LV7 \ {x}) U{z}
S Vg = (V7 \ {x}) U {2}
[x := 2" V7 = {x,y,2}
Fixpoint iteration:
ij1 2 3 4 5 6 7
00 0 0 0 0 0 7
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Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program: Equation system:
[x := 2]';]y := 4]?; LVi=Ls\{y}
[x := 1]3; LVy = LV3 \ {x}
if [y > 0]* then V3 = LV4 U {y}
o i 4]f LVy = (V5 \ {z}) U {x}) U (V6 \ {z}) U {v})
else LVs = (LV7 \ {x}) U{z}
[z = y*y]6; LVG = (LV7 \ {X}) U {Z}
[X = ]7 LV7 = {X7Y7Z}
Fixpoint iteration:
ij1 2 3 4 5 6 7
0[0 0 0 0 0 0 0
Lo 0 {yr =y {2zt {z} {xyz}
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Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program: Equation system:
[x := 2]1;[y = 4]2; LV = V2 \ {y}
[X = 1]3; LV2 = LV3 \ {X}
if [y > 0]* then V3 = LV4 U {y}
o = xf Vs = (V5 \ {2}) U {x}) U (V6 \ {=}) U {y})
else LVs = (LV7 \ {x}) U{z}
[z := y*y]%; Ve = (LV7 \ {x}) U {z}
x := 2|7 V7 = {x,y,z}

Fixpoint iteration:

1 2 3 4 5 6 7
0 0 0 0 0 0 0
0 0 {y} {xyr {z} {z} {xvyz}
0 {y} {=y} {xyt {v.z2} {v.z} {xyz}

)
0
1
2
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Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program: Equation system:
== 25 = B = Vo \ {y}
[x := 1]3; LV = V3 \ {x}
if [y > 0]* then V3 = LV4 U {y}
o = 2" Vs = (V5 \ {z}) U {x}) U (V6 \ {=}) U {3})
else LVs = (LV7 \ {x}) U {z}
z := y*y]6; Ve = (LV7 \ {x}) U {z}
x := 2|7 V7 = {x,y,z}

Fixpoint iteration:

il1 2 3 4 5 6 7
0 0 0 0 0 0
0 {y} {xyr {z} A{z} {xvyz}
v} {=vy} {xy} {v.z} {v.z} {xvyz}
v} {=vy} {xy} {v.z} {v.z} {xvyz}
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© Uniqueness of Solutions
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5
@ Available Expressions: consider
2 = xy]';
while [true]? do
[skip]3;
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5

@ Available Expressions: consider

[z := x+y]'; = AE; =0
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]®; AE; = AE,
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5

@ Available Expressions: consider

[Z c= X+y]1; — AE1 = @
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]?’; AE3; = AE,
— AE1 = @
AE; = {X+y} N AE;
AE; = AE,
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

IS
|

Example 17

@ Available Expressions: consider

[z := x+y]l; — AE; =10
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]®; AEs = AE;
— AE; =)
AEs — {x+y} N AE;
AE; = AE,

— Solutions: AE; = AEy = AE3 =0 or
AE; = @,AEQ = AE;3 = {X+y}
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

IS
|

Example 17

@ Available Expressions: consider

[z := x+y]l; — AE; =10
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]g; AE; = AEy
— AE; =10
AE; = {X+y} N AE3
AE3 = AE;

— Solutions: AE; = AEy = AE3 =0 or
AE; = @,AEQ = AE;3 = {X+y}

Here: greatest solution {x+y} (maximal potential for optimization)
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

IS
|

Example 17

@ Available Expressions: consider

[z := x+y]l; — AE; =10
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]g; AE; = AEy
— AE; =10
AE; = {X+y} N AE3
AE3 = AE;

— Solutions: AE; = AEy = AE3 =0 or
AE; = @,AEQ = AE;3 = {X+y}

Here: greatest solution {x+y} (maximal potential for optimization)

@ Live Variables: see Exercise 9.3
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