

Semantics and Verification of Software

Lecture 17: Dataflow Analysis IV (Equation Solving)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw08/>

Winter semester 2008/09

- 1 Repetition: The Dataflow Analysis Framework
- 2 Solving Dataflow Equation Systems
- 3 Uniqueness of Solutions

Definition (Complete lattice)

A **complete lattice** is a partial order (D, \sqsubseteq) such that all subsets of D have least upper as well as greatest lower bounds. In this case,

$$\begin{aligned}\perp &:= \bigsqcup \emptyset = \bigsqcap D \text{ and} \\ \top &:= \bigsqcap \emptyset = \bigsqcup D\end{aligned}$$

denote the **least** and the **greatest element** of D , respectively.

Example

- ➊ (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \supseteq)$ is a complete lattice with $\perp = AExp_c$ and $\top = \emptyset$
- ➋ (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$ is a complete lattice with $\perp = \emptyset$ and $\top = Var_c$

Chains represent the approximation of the analysis information.

Definition (Chain; repetition of Def. 6.4 and 6.6)

Let (D, \sqsubseteq) be a partial order.

- ① A subset $S \subseteq D$ is called a **chain** in D if, for every $s_1, s_2 \in S$,
$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$
(that is, S is a totally ordered subset of D).
- ② (D, \sqsubseteq) is called **chain complete (CCPO)** if each of its chains has a least upper bound.
- ③ (D, \sqsubseteq) satisfies the **Ascending Chain Condition (ACC)** if each ascending chain $d_1 \sqsubseteq d_2 \sqsubseteq \dots$ eventually stabilizes, i.e., there exists $n \in \mathbb{N}$ such that $d_n = d_{n+1} = \dots$

Corollary

Complete lattices are CCPOs.

Monotonicity of Functions

Transfer functions formalize the impact of a block in the program on the analysis information.

Definition (Monotonicity; repetition of Def. 7.1)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \rightarrow D'$. F is called **monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq'))** if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies F(d_1) \sqsubseteq' F(d_2).$$

Example

① (Available Expressions) $(D, \sqsubseteq) = (2^{AExp_c}, \supseteq)$

Each transfer function $\varphi_{l'}(A) := (A \setminus \text{kill}_{\text{AE}}(B^{l'})) \cup \text{gen}_{\text{AE}}(B^{l'})$ is monotonic

② (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$

Each transfer function $\varphi_{l'}(V) := (V \setminus \text{kill}_{\text{LV}}(B^{l'})) \cup \text{gen}_{\text{LV}}(B^{l'})$ is monotonic

Theorem (Fixpoint Theorem; repetition of Thm. 7.7)

Let (D, \sqsubseteq) be a CCPo and $F : D \rightarrow D$ continuous. Then

$$\text{fix}(F) := \bigsqcup \{F^n(\bigsqcup \emptyset) \mid n \in \mathbb{N}\}$$

is the least fixpoint of F .

Definition (Continuity; repetition of Def. 7.5)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be CCPOs and $F : D \rightarrow D'$ monotonic. Then F is called **continuous** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every non-empty chain $S \subseteq D$,

$$F(\bigsqcup S) = \bigsqcup F(S).$$

Corollary

Monotonic functions on partial orders that satisfy ACC are continuous.

Definition (Dataflow system)

A **dataflow system** $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) **labels** L (here: L_c),
- a set of **extremal labels** $E \subseteq L$ (here: $\{\text{init}(c)\}$ or $\text{final}(c)$),
- a **flow relation** $F \subseteq L \times L$ (here: $\text{flow}(c)$ or $\text{flow}^R(c)$),
- a **complete lattice** (D, \sqsubseteq) that satisfies ACC
(with LUB operator \sqcup and least element \perp),
- an **extremal value** $\iota \in D$ (for the extremal labels), and
- a collection of monotonic **transfer functions** $\{\varphi_l \mid l \in L\}$ of type $\varphi_l : D \rightarrow D$.

Example

Problem	Available Expressions	Live Variables
E	$\{\text{init}(c)\}$	$\text{final}(c)$
F	$\text{flow}(c)$	$\text{flow}^R(c)$
D	2^{AExp_c}	2^{Var_c}
\sqsubseteq	\supseteq	\subseteq
\sqcup	\bigcap	\bigcup
\perp	$AExp_c$	\emptyset
ι	\emptyset	Var_c
φ_l	$\varphi_l(d) = (d \setminus \text{kill}(B^l)) \cup \text{gen}(B^l)$	

- 1 Repetition: The Dataflow Analysis Framework
- 2 Solving Dataflow Equation Systems
- 3 Uniqueness of Solutions

Definition 17.1 (Dataflow equation system)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. S defines the following **equation system** over the set of variables $\{\text{Al}_l \mid l \in L\}$:

$$\text{Al}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\text{Al}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

Just as in the denotational semantics of `while` loops, the equation system determines a functional whose **fixpoints** are exactly the **solutions** of the equation system.

Definition 17.2 (Dataflow functional)

The equation system of a dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ induces a **functional**

$$\Phi_S : D^n \rightarrow D^n : (d_{l_1}, \dots, d_{l_n}) \mapsto (d'_{l_1}, \dots, d'_{l_n})$$

where $L = \{l_1, \dots, l_n\}$ and, for each $1 \leq i \leq n$,

$$d'_{l_i} := \begin{cases} \iota & \text{if } l_i \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l_i) \in F\} & \text{otherwise} \end{cases}$$

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined
- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined
- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice satisfying ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined
- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice satisfying ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Every transfer function φ_l **monotonic** in D
 $\implies \Phi_S$ **monotonic** in D^n

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined
- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice satisfying ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Every transfer function φ_l **monotonic** in D
 $\implies \Phi_S$ **monotonic** in D^n
- Thus the **(least) fixpoint is effectively computable** by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined
- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice satisfying ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Every transfer function φ_l **monotonic** in D
 $\implies \Phi_S$ **monotonic** in D^n
- Thus the **(least) fixpoint** is **effectively computable** by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

- If maximal length of chains in D is m
 \implies maximal length of chains in D^n is $m \cdot n$
 \implies fixpoint iteration requires at most $m \cdot n$ steps

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

```
c = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						

Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	$\{x, y, z\}$

Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	$\{x, y, z\}$
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$

Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	$\{x, y, z\}$
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$

- 1 Repetition: The Dataflow Analysis Framework
- 2 Solving Dataflow Equation Systems
- 3 Uniqueness of Solutions

Uniqueness of Solutions

Just as in the denotational semantics of `while` loops, solutions of dataflow equation systems are **not unique**.

Just as in the denotational semantics of `while` loops, solutions of dataflow equation systems are **not unique**.

Example 17.5

- ➊ Available Expressions: consider

```
[z := x+y]1;  
while [true]2 do  
  [skip]3;
```

Just as in the denotational semantics of `while` loops, solutions of dataflow equation systems are **not unique**.

Example 17.5

- ➊ Available Expressions: consider

$[z := x+y]^1;$ $\implies AE_1 = \emptyset$
 $\text{while [true]}^2 \text{ do}$ $AE_2 = (AE_1 \cup \{x+y\}) \cap AE_3$
 $[skip]^3;$ $AE_3 = AE_2$

Just as in the denotational semantics of `while` loops, solutions of dataflow equation systems are **not unique**.

Example 17.5

- ➊ Available Expressions: consider

$$\begin{array}{lll} [z := x+y]^1; & \implies AE_1 = \emptyset \\ \text{while [true]}^2 \text{ do} & AE_2 = (AE_1 \cup \{x+y\}) \cap AE_3 \\ [skip]^3; & AE_3 = AE_2 \\ & \implies AE_1 = \emptyset \\ & AE_2 = \{x+y\} \cap AE_3 \\ & AE_3 = AE_2 \end{array}$$

Uniqueness of Solutions

Just as in the denotational semantics of `while` loops, solutions of dataflow equation systems are **not unique**.

Example 17.5

- ➊ Available Expressions: consider

$$\begin{array}{ll} [z := x+y]^1; & \Rightarrow AE_1 = \emptyset \\ \text{while [true]}^2 \text{ do} & AE_2 = (AE_1 \cup \{x+y\}) \cap AE_3 \\ [skip]^3; & AE_3 = AE_2 \end{array}$$

$$\begin{array}{ll} & \Rightarrow AE_1 = \emptyset \\ & AE_2 = \{x+y\} \cap AE_3 \\ & AE_3 = AE_2 \end{array}$$

$$\begin{array}{ll} \Rightarrow \text{Solutions: } & AE_1 = AE_2 = AE_3 = \emptyset \text{ or} \\ & AE_1 = \emptyset, AE_2 = AE_3 = \{x+y\} \end{array}$$

Uniqueness of Solutions

Just as in the denotational semantics of `while` loops, solutions of dataflow equation systems are **not unique**.

Example 17.5

- ➊ Available Expressions: consider

$[z := x+y]^1;$ $\Rightarrow AE_1 = \emptyset$
while [true]² do $AE_2 = (AE_1 \cup \{x+y\}) \cap AE_3$
[skip]³;

$\Rightarrow AE_1 = \emptyset$
 $AE_2 = \{x+y\} \cap AE_3$
 $AE_3 = AE_2$

\Rightarrow **Solutions:** $AE_1 = AE_2 = AE_3 = \emptyset$ or
 $AE_1 = \emptyset, AE_2 = AE_3 = \{x+y\}$

Here: **greatest** solution $\{x+y\}$ (maximal potential for optimization)

Uniqueness of Solutions

Just as in the denotational semantics of `while` loops, solutions of dataflow equation systems are **not unique**.

Example 17.5

① Available Expressions: consider

$$\begin{array}{ll} [z := x+y]^1; & \Rightarrow AE_1 = \emptyset \\ \text{while [true]}^2 \text{ do} & AE_2 = (AE_1 \cup \{x+y\}) \cap AE_3 \\ [skip]^3; & AE_3 = AE_2 \end{array}$$

$$\begin{array}{ll} & \Rightarrow AE_1 = \emptyset \\ & AE_2 = \{x+y\} \cap AE_3 \\ & AE_3 = AE_2 \end{array}$$

$$\Rightarrow \text{Solutions: } AE_1 = AE_2 = AE_3 = \emptyset \text{ or} \\ AE_1 = \emptyset, AE_2 = AE_3 = \{x+y\}$$

Here: **greatest** solution $\{x+y\}$ (maximal potential for optimization)

② Live Variables: see Exercise 9.3