
Semantics and Verification of Software

Lecture 17: Dataflow Analysis IV (Equation Solving)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/


Outline

1 Repetition: The Dataflow Analysis Framework

2 Solving Dataflow Equation Systems

3 Uniqueness of Solutions

Semantics and Verification of Software Winter semester 2008/09 2



Complete Lattices

Definition (Complete lattice)

A complete lattice is a partial order (D,⊑) such that all subsets of D

have least upper as well as greatest lower bounds. In this case,

⊥ :=
⊔

∅ =
d

D and
⊤ :=

d
∅ =

⊔
D

denote the least and the greatest element of D, respectively.

Example

1 (Available Expressions) (D,⊑) = (2AExp
c ,⊇) is a complete lattice

with ⊥ = AExpc and ⊤ = ∅

2 (Live Variables) (D,⊑) = (2Varc ,⊆) is a complete lattice with
⊥ = ∅ and ⊤ = Var c

Semantics and Verification of Software Winter semester 2008/09 3



Chains

Chains represent the approximation of the analysis information.

Definition (Chain; repetition of Def. 6.4 and 6.6)

Let (D,⊑) be a partial order.

1 A subset S ⊆ D is called a chain in D if, for every s1, s2 ∈ S,
s1 ⊑ s2 or s2 ⊑ s1

(that is, S is a totally ordered subset of D).

2 (D,⊑) is called chain complete (CCPO) if each of its chains has a
least upper bound.

3 (D,⊑) satisfies the Ascending Chain Condition (ACC) if each
ascending chain d1 ⊑ d2 ⊑ . . . eventually stabilizes, i.e., there
exists n ∈ N such that dn = dn+1 = . . .

Corollary

Complete lattices are CCPOs.

Semantics and Verification of Software Winter semester 2008/09 4



Monotonicity of Functions

Transfer functions formalize the impact of a block in the program on
the analysis information.

Definition (Monotonicity; repetition of Def. 7.1)

Let (D,⊑) and (D′,⊑′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,⊑) and (D′,⊑′)) if, for every d1, d2 ∈ D,

d1 ⊑ d2 =⇒ F (d1) ⊑
′ F (d2).

Example

1 (Available Expressions) (D,⊑) = (2AExp
c ,⊇)

Each transfer function ϕl′(A) := (A \ killAE(Bl′)) ∪ genAE(Bl′) is
monotonic

2 (Live Variables) (D,⊑) = (2Varc ,⊆)
Each transfer function ϕl′(V ) := (V \ killLV(Bl′)) ∪ genLV(Bl′) is
monotonic

Semantics and Verification of Software Winter semester 2008/09 5



Fixpoints

Theorem (Fixpoint Theorem; repetition of Thm. 7.7)

Let (D,⊑) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{Fn (
⊔

∅) | n ∈ N}
is the least fixpoint of F .

Definition (Continuity; repetition of Def. 7.5)

Let (D,⊑) and (D′,⊑′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,⊑) and (D′,⊑′)) if, for every
non-empty chain S ⊆ D,

F (
⊔

S) =
⊔

F (S).

Corollary

Monotonic functions on partial orders that satisfy ACC are continuous.

Semantics and Verification of Software Winter semester 2008/09 6



Dataflow Systems I

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,⊑), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L × L (here: flow(c) or flowR(c)),

a complete lattice (D,⊑) that satisfies ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.

Semantics and Verification of Software Winter semester 2008/09 7



Dataflow Systems II

Example

Problem Available Expressions Live Variables

E {init(c)} final(c)
F flow(c) flowR(c)
D 2AExp

c 2Varc

⊑ ⊇ ⊆
⊔ ⋂ ⋃

⊥ AExpc ∅
ι ∅ Var c

ϕl ϕl(d) = (d \ kill(Bl)) ∪ gen(Bl)

Semantics and Verification of Software Winter semester 2008/09 8



Outline

1 Repetition: The Dataflow Analysis Framework

2 Solving Dataflow Equation Systems

3 Uniqueness of Solutions

Semantics and Verification of Software Winter semester 2008/09 9



The Equation System

Definition 17.1 (Dataflow equation system)

Let S = (L, E, F, (D,⊑), ι, ϕ) be a dataflow system. S defines the
following equation system over the set of variables {AIl | l ∈ L}:

AIl =

{
ι if l ∈ E
⊔
{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

Semantics and Verification of Software Winter semester 2008/09 10



The Functional

Just as in the denotational semantics of while loops, the equation
system determines a functional whose fixpoints are exactly the
solutions of the equation system.

Definition 17.2 (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,⊑), ι, ϕ)
induces a functional

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′

ln
)

where L = {l1, . . . , ln} and, for each 1 ≤ i ≤ n,

d′li :=

{
ι if li ∈ E
⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise

Semantics and Verification of Software Winter semester 2008/09 11



Fixpoint Iteration I

Remarks:

(D,⊑) being a complete lattice ensures that ΦS is well defined

Semantics and Verification of Software Winter semester 2008/09 12



Fixpoint Iteration I

Remarks:

(D,⊑) being a complete lattice ensures that ΦS is well defined

(d1, . . . , dn) is a solution of the equation system iff it is a fixpoint
of ΦS

Semantics and Verification of Software Winter semester 2008/09 12



Fixpoint Iteration I

Remarks:

(D,⊑) being a complete lattice ensures that ΦS is well defined

(d1, . . . , dn) is a solution of the equation system iff it is a fixpoint
of ΦS

If (D,⊑) is a complete lattice satisfying ACC, then so is (Dn,⊑n)
(where (d1, . . . , dn) ⊑n (d′1, . . . , d

′

n) iff di ⊑ d′
i
for every 1 ≤ i ≤ n)

Semantics and Verification of Software Winter semester 2008/09 12



Fixpoint Iteration I

Remarks:

(D,⊑) being a complete lattice ensures that ΦS is well defined

(d1, . . . , dn) is a solution of the equation system iff it is a fixpoint
of ΦS

If (D,⊑) is a complete lattice satisfying ACC, then so is (Dn,⊑n)
(where (d1, . . . , dn) ⊑n (d′1, . . . , d

′

n) iff di ⊑ d′
i
for every 1 ≤ i ≤ n)

Every transfer function ϕl monotonic in D

=⇒ ΦS monotonic in Dn

Semantics and Verification of Software Winter semester 2008/09 12



Fixpoint Iteration I

Remarks:

(D,⊑) being a complete lattice ensures that ΦS is well defined

(d1, . . . , dn) is a solution of the equation system iff it is a fixpoint
of ΦS

If (D,⊑) is a complete lattice satisfying ACC, then so is (Dn,⊑n)
(where (d1, . . . , dn) ⊑n (d′1, . . . , d

′

n) iff di ⊑ d′
i
for every 1 ≤ i ≤ n)

Every transfer function ϕl monotonic in D

=⇒ ΦS monotonic in Dn

Thus the (least) fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔

{Φi
S(⊥Dn) | i ∈ N}

where ⊥Dn = (⊥D, . . . ,⊥D
︸ ︷︷ ︸

n times

)

Semantics and Verification of Software Winter semester 2008/09 12



Fixpoint Iteration I

Remarks:

(D,⊑) being a complete lattice ensures that ΦS is well defined

(d1, . . . , dn) is a solution of the equation system iff it is a fixpoint
of ΦS

If (D,⊑) is a complete lattice satisfying ACC, then so is (Dn,⊑n)
(where (d1, . . . , dn) ⊑n (d′1, . . . , d

′

n) iff di ⊑ d′
i
for every 1 ≤ i ≤ n)

Every transfer function ϕl monotonic in D

=⇒ ΦS monotonic in Dn

Thus the (least) fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔

{Φi
S(⊥Dn) | i ∈ N}

where ⊥Dn = (⊥D, . . . ,⊥D
︸ ︷︷ ︸

n times

)

If maximal length of chains in D is m

=⇒ maximal length of chains in Dn is m · n
=⇒ fixpoint iteration requires at most m · n steps

Semantics and Verification of Software Winter semester 2008/09 12



Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Semantics and Verification of Software Winter semester 2008/09 13



Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Semantics and Verification of Software Winter semester 2008/09 13



Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc

Semantics and Verification of Software Winter semester 2008/09 13



Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc

1 ∅ AExpc AExpc AExpc ∅

Semantics and Verification of Software Winter semester 2008/09 13



Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc

1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅

Semantics and Verification of Software Winter semester 2008/09 13



Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc

1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅

Semantics and Verification of Software Winter semester 2008/09 13



Fixpoint Iteration II

Example 17.3 (Available Expressions; cf. Example 14.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc

1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Semantics and Verification of Software Winter semester 2008/09 13



Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Semantics and Verification of Software Winter semester 2008/09 14



Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Semantics and Verification of Software Winter semester 2008/09 14



Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅

Semantics and Verification of Software Winter semester 2008/09 14



Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}

Semantics and Verification of Software Winter semester 2008/09 14



Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Semantics and Verification of Software Winter semester 2008/09 14



Fixpoint Iteration III

Example 17.4 (Live Variables; cf. Example 15.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Semantics and Verification of Software Winter semester 2008/09 14



Outline

1 Repetition: The Dataflow Analysis Framework

2 Solving Dataflow Equation Systems

3 Uniqueness of Solutions

Semantics and Verification of Software Winter semester 2008/09 15



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Semantics and Verification of Software Winter semester 2008/09 16



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5
1 Available Expressions: consider

[z := x+y]1;
while [true]2 do

[skip]3;

Semantics and Verification of Software Winter semester 2008/09 16



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5
1 Available Expressions: consider

[z := x+y]1;
while [true]2 do

[skip]3;

=⇒ AE1 = ∅
AE2 = (AE1 ∪ {x+y}) ∩ AE3

AE3 = AE2

Semantics and Verification of Software Winter semester 2008/09 16



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5
1 Available Expressions: consider

[z := x+y]1;
while [true]2 do

[skip]3;

=⇒ AE1 = ∅
AE2 = (AE1 ∪ {x+y}) ∩ AE3

AE3 = AE2

=⇒ AE1 = ∅
AE2 = {x+y} ∩ AE3

AE3 = AE2

Semantics and Verification of Software Winter semester 2008/09 16



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5
1 Available Expressions: consider

[z := x+y]1;
while [true]2 do

[skip]3;

=⇒ AE1 = ∅
AE2 = (AE1 ∪ {x+y}) ∩ AE3

AE3 = AE2

=⇒ AE1 = ∅
AE2 = {x+y} ∩ AE3

AE3 = AE2

=⇒ Solutions: AE1 = AE2 = AE3 = ∅ or
AE1 = ∅,AE2 = AE3 = {x+y}

Semantics and Verification of Software Winter semester 2008/09 16



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5
1 Available Expressions: consider

[z := x+y]1;
while [true]2 do

[skip]3;

=⇒ AE1 = ∅
AE2 = (AE1 ∪ {x+y}) ∩ AE3

AE3 = AE2

=⇒ AE1 = ∅
AE2 = {x+y} ∩ AE3

AE3 = AE2

=⇒ Solutions: AE1 = AE2 = AE3 = ∅ or
AE1 = ∅,AE2 = AE3 = {x+y}

Here: greatest solution {x+y} (maximal potential for optimization)

Semantics and Verification of Software Winter semester 2008/09 16



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 17.5
1 Available Expressions: consider

[z := x+y]1;
while [true]2 do

[skip]3;

=⇒ AE1 = ∅
AE2 = (AE1 ∪ {x+y}) ∩ AE3

AE3 = AE2

=⇒ AE1 = ∅
AE2 = {x+y} ∩ AE3

AE3 = AE2

=⇒ Solutions: AE1 = AE2 = AE3 = ∅ or
AE1 = ∅,AE2 = AE3 = {x+y}

Here: greatest solution {x+y} (maximal potential for optimization)

2 Live Variables: see Exercise 9.3

Semantics and Verification of Software Winter semester 2008/09 16


	Repetition: The Dataflow Analysis Framework
	Solving Dataflow Equation Systems
	Uniqueness of Solutions

