

Semantics and Verification of Software

Lecture 18: Dataflow Analysis V (Efficient Fixpoint Computation)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw08/>

Winter semester 2008/09

1 Repetition: Solving Dataflow Equation Systems

2 Efficient Fixpoint Computation

Definition (Dataflow system)

A **dataflow system** $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) **labels** L (here: L_c),
- a set of **extremal labels** $E \subseteq L$ (here: $\{\text{init}(c)\}$ or $\text{final}(c)$),
- a **flow relation** $F \subseteq L \times L$ (here: $\text{flow}(c)$ or $\text{flow}^R(c)$),
- a **complete lattice** (D, \sqsubseteq) that satisfies ACC
(with LUB operator \sqcup and least element \perp),
- an **extremal value** $\iota \in D$ (for the extremal labels), and
- a collection of monotonic **transfer functions** $\{\varphi_l \mid l \in L\}$ of type $\varphi_l : D \rightarrow D$.

Definition (Dataflow equation system)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. S defines the following **equation system** over the set of variables $\{\text{Al}_l \mid l \in L\}$:

$$\text{Al}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\text{Al}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

The Functional and Its Fixpoint

Definition (Dataflow functional)

The equation system of a dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ induces a **functional**

$$\Phi_S : D^n \rightarrow D^n : (d_{l_1}, \dots, d_{l_n}) \mapsto (d'_{l_1}, \dots, d'_{l_n})$$

where $L = \{l_1, \dots, l_n\}$ and, for each $1 \leq i \leq n$,

$$d'_{l_i} := \begin{cases} \iota & \text{if } l_i \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l_i) \in F\} & \text{otherwise} \end{cases}$$

Corollary

The least fixpoint of Φ_S is effectively computable by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

Uniqueness of Solutions

Just as in the denotational semantics of `while` loops, solutions of dataflow equation systems are **not unique**.

Example

① Available Expressions: consider

$$\begin{array}{lcl} [z := x+y]^1; & \implies AE_1 = \emptyset \\ \text{while [true]}^2 \text{ do} & AE_2 = (AE_1 \cup \{x+y\}) \cap AE_3 \\ [skip]^3; & AE_3 = AE_2 \end{array}$$

$$\begin{array}{lcl} & \implies AE_1 = \emptyset \\ & AE_2 = \{x+y\} \cap AE_3 \\ & AE_3 = AE_2 \end{array}$$

$$\implies \text{Solutions: } AE_1 = AE_2 = AE_3 = \emptyset \text{ or} \\ AE_1 = \emptyset, AE_2 = AE_3 = \{x+y\}$$

Here: **greatest** solution $\{x+y\}$ (maximal potential for optimization)

② Live Variables: see Exercise 9.3

- 1 Repetition: Solving Dataflow Equation Systems
- 2 Efficient Fixpoint Computation

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al_l in every step
⇒ redundant if $\text{Al}_{l'}$ at no F -predecessor l' changed
⇒ optimization by worklist

Algorithm 18.1 (Worklist algorithm)

Input: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (L \times L)^*$, $\{\text{Al}_l \in D \mid l \in L\}$

Procedure: $W := \varepsilon$; **for** $(l, l') \in F$ **do** $W := (l, l') \cdot W$; % Initialize W
for $l \in L$ **do** % Initialize Al
 if $l \in E$ **then** $\text{Al}_l := \iota$ **else** $\text{Al}_l := \perp_D$;
while $W \neq \varepsilon$ **do**
 $(l, l') := \text{head}(W)$; $W := \text{tail}(W)$;
 if $\varphi_l(\text{Al}_l) \not\subseteq \text{Al}_{l'}$ **then** % Fixpoint not yet reached
 $\text{Al}_{l'} := \text{Al}_{l'} \sqcup \varphi_l(\text{Al}_l)$;
 for $(l', l'') \in F$ **do** $W := (l', l'') \cdot W$;

Output: $\{\text{Al}_l \mid l \in L\}$

A Worklist Algorithm II

Example 18.2 (Worklist algorithm)

Available Expression analysis for $c = [x := a+b]^1;$
 $[y := a*b]^2;$
 $\text{while } [y > a+b]^3 \text{ do}$
 $[a := a+1]^4;$
 $[x := a+b]^5$

(cf. Examples 14.9 and 17.3)

Transfer functions:

$$\begin{aligned}\varphi_1(A) &= A \cup \{a+b\} \\ \varphi_2(A) &= A \cup \{a*b\} \\ \varphi_3(A) &= A \cup \{a+b\} \\ \varphi_4(A) &= A \setminus \{a+b, a*b, a+1\} \\ \varphi_5(A) &= A \cup \{a+b\}\end{aligned}$$

Computation protocol: on the board

Properties of the algorithm:

Theorem 18.3 (Correctness of worklist algorithm)

Given a dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$, Algorithm 18.1 always terminates and computes $\text{fix}(\Phi_S)$.

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

