
Semantics and Verification of Software

Lecture 19: Dataflow Analysis VI (The MOP Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Seminar: Applying Formal Verification Methods

to Embedded Systems

Joint weekly Seminar with Embedded Software Laboratory

Theoretical and Practical CS

Topics:

Static program analysis
Abstract interpretation
Software model checking (of assembly and source code)
Analysis of timed behavior
Resource awareness

Requirements:

Vordiplom/Bachelor
In particular: Automata Theory and Formal Languages
Helpful: basic knowledge in

this course
(Formal Methods for) Embedded Systems
Model Checking Technology

Semantics and Verification of Software Winter semester 2008/09 3

Outline

1 The MOP Solution

2 Another Analysis: Constant Propagation

Semantics and Verification of Software Winter semester 2008/09 4

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Definition 19.1 (Paths)

Let S = (L, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every l ∈ L,
the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,
(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Winter semester 2008/09 5

The MOP Solution II

Definition 19.2 (MOP solution)

Let S = (L, E, F, (D,⊑), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Semantics and Verification of Software Winter semester 2008/09 6

The MOP Solution III

Example 19.3 (Live Variables; cf. Examples 15.3 and 17.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) ⊔ ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))
= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) ⊔

ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))
= ϕ2(ϕ3(ϕ4({x, y}))) ⊔

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) ⊔ ϕ2(ϕ3({y}))
= ϕ2({y}) ⊔ ϕ2({y})
= ∅ ⊔ ∅
= ∅

Semantics and Verification of Software Winter semester 2008/09 7

Outline

1 The MOP Solution

2 Another Analysis: Constant Propagation

Semantics and Verification of Software Winter semester 2008/09 8

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 19.4 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations:
[w := x+1]5 [x := 3]7

Semantics and Verification of Software Winter semester 2008/09 9

Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,⊑), ι, ϕ) is given by

set of labels L := Lc,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,⊑) where

D := {δ | δ : Var c → Z ∪ {⊥,⊤}}
δ(x) = z ∈ Z: x has constant value z

δ(x) = ⊥: x undefined
δ(x) = ⊤: x overdefined (i.e., different possible values)

⊑⊆ D × D defined by pointwise extension of ⊥ ⊑ z ⊑ ⊤
(for every z ∈ Z)

Example 19.5

Var c = {w, x, y, z},
δ1 = (⊥

︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

), δ2 = (3
︸︷︷︸

w

, 1
︸︷︷︸

x

, 4
︸︷︷︸

y

, ⊤
︸︷︷︸

z

)

=⇒ δ1 ⊔ δ2 = (3
︸︷︷︸

w

, 1
︸︷︷︸

x

, ⊤
︸︷︷︸

y

, ⊤
︸︷︷︸

z

)

Semantics and Verification of Software Winter semester 2008/09 10

Formalizing Constant Propagation Analysis II

Dataflow system S = (L, E, F, (D,⊑), ι, ϕ) (continued):

extremal value ι := δ⊤ ∈ D where δ⊤(x) := ⊤ for every x ∈ Var c,

transfer functions {ϕl | l ∈ L} defined by

ϕl(δ) :=

{
δ if Bl = skip or Bl ∈ BExp

δ[x 7→ AJaKδ] if Bl = (x := a)

where

AJxKδ := δ(x)
AJzKδ := z

AJa1 op a2Kδ :=







z1 op z2 if z1, z2 ∈ Z

⊥ if z1 = ⊥ or z2 = ⊥
⊤ otherwise

if z1 := AJa1Kδ and z2 := AJa2Kδ

Semantics and Verification of Software Winter semester 2008/09 11

Formalizing Constant Propagation Analysis III

Example 19.6

If δ = (⊥
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

), then

ϕl(δ) =







(0
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := 0)

(3
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := y+1)

(⊥
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := w+x)

(⊤
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, ⊤
︸︷︷︸

z

) if Bl = (w := z+2)

Semantics and Verification of Software Winter semester 2008/09 12

Formalizing Constant Propagation Analysis III

Example 19.7

Constant Propagation Analysis for

c := [x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

ϕ1((a, b, c, d)) = (a, 1, c, d)
ϕ2((a, b, c, d)) = (a, b, 1, d)
ϕ3((a, b, c, d)) = (a, b, c, 1)
ϕ4((a, b, c, d)) = (a, b, c, d)
ϕ5((a, b, c, d)) = (b + c, b, c, d)
ϕ6((a, b, c, d)) = (a, b, c, d)
ϕ7((a, b, c, d)) = (a, c + 2, c, d)

1 Fixpoint solution (on the board)

2 MOP solution (on the board)

Semantics and Verification of Software Winter semester 2008/09 13

	The MOP Solution
	Another Analysis: Constant Propagation

