Semantics and Verification of Software

Lecture 19: Dataflow Analysis VI (The MOP Solution)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

‘GRUPPE

FACHINFORMATIK

RWTHAACHEN
UNIVERSITY

Online Registration for
Seminars and Practical Courses (Praktika)
in Summer Term 2009

Who?
Students of: = Hauptstudium Informatik
* Master Courses
» Bachelor Informatik (PraSeminar!)

Where?
www.graphics.rwth-aachen.de/apse

When?
05.01.2009 - 18.01.2009

Seminar: Applying Formal Verification Methods

to Embedded Systems

©

Joint weekly Seminar with Embedded Software Laboratory

Theoretical and Practical CS
Topics:
e Static program analysis
e Abstract interpretation
¢ Software model checking (of assembly and source code)
o Analysis of timed behavior
o Resource awareness

©

©

Requirements:
s Vordiplom/Bachelor
o In particular: Automata Theory and Formal Languages
o Helpful: basic knowledge in
¢ this course

o (Formal Methods for) Embedded Systems
@ Model Checking Technology

m' Semantics and Verification of Software Winter semester 2008,/09

@ The MOP Solution

Rm Semantics and Verification of Software ter semester 2008

The MOP Solution I

@ Other solution method for dataflow systems

@ MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Definition 19.1 (Paths)

Let S = (L,E,F,(D,C),t,p) be a dataflow system. For every [€ L,
the set of paths up to [is given by

Path(l) = {[11,...,lk_1] ‘ k>1,l; € F,
(li,lix1) € F for every 1 <i <k, I}, =1}.

For a path p = [l1,...,lxk—1] € Path(l), we define the transfer function
¢p: D — D by
Ppi=y,_, °...0¢, oidp

(so that ¢ = idp).

Semantics and Verification of Software Winter semester 2008,/09 5

The MOP Solution I1

Definition 19.2 (MOP solution)

Let S = (L,E,F,(D,C),¢,p) be a dataflow system where
L={l,...,l,}. The MOP solution for S is determined by

mop(S) o= (mop(ll)v SRR mop(ln)) S
where, for every [€ L,

mop(l) := |_[{ep(e) | p € Path(1)}.

Remark:
o Path(l) is generally infinite
—> not clear how to compute mop(l)
o In fact: MOP solution generally undecidable (later)

m Semantics and Verification of Software Winter semester 2008,/09 6

The MOP Solution III

Example 19.3 (Live Variables; cf. Examples 15.3 and 17.4)

c=[x := 2] = mop(1) = @[7,5,4,3,2(t) U p[7,6432()
[y := 4]%; = pa(p3(a(ps(pr({x,y,2}))))) U
x := 1P ©2(03(pa(ps(r({x,5,2})))))
if [y > 0]4 then = p2(p3(pa(ps({y, 2})))) U
[z := x]° ©2(03(palps({y,2}))))
else = pa(p3(pa({x,y}))) U
[z := y*y]S; p2(p3(pa({y})))
[x := 2|7 = p2(p3({x,y}) U pa(ws({y}))
—> Path(1) = {[7,5,4,3,2] _ ey
[7,6,4,3,2]} — 0

m Semantics and Verification of Software Winter semester 2008,/09 7

© Another Analysis: Constant Propagation

Rm Semantics and Verification of Software ter semester 2008

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 19.4 (Constant Propagation Analysis)

[x o= 1]
.= 1]2.
FZ[= H:%, @ y =z =1 at labels 4-7
while [z > 0]* do @ w, x not constant at labels 4-7
[w := x+y]%; @ possible optimizations:
if [w = 2]° then [w = x+1]% [x := 3]
[x := y+2]7

m Semantics and Verification of Software Winter semester 2008,/09

Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,C),,) is given by
set of labels L := L,
extremal labels E := {init(c)} (forward problem),
flow relation F' := flow(c) (forward problem),
complete lattice (D, C) where
o D:={6|6: Var. - ZU{L, T}}
@ 0(xz) = z € Z: x has constant value z
@ 0(x) = L: z undefined
@ 0(x) = T: z overdefined (i.e., different possible values)
o CC D x D defined by pointwise extension of 1 C z = T
(for every z € Z)

e 6 ¢ ¢

Semantics and Verification of Software Winter semester 2008,/09

Formalizing Constant Propagation Analysis II

Dataflow system S = (L, E, F,(D,C),t,¢) (continued):
o extremal value ¢ := §1 € D where 67 (z) := T for every z € Var,,

o transfer functions {¢; | [€ L} defined by

(5) == g if B! = skip or B! € BExp
A= ol — Alale] i B' = (@ :=a)
where
= z10p zg if 21,20 € Z
ﬁ%ﬁﬂg _ g() Ular op az]d := ¢ L if 21 = Lorz=.1
o T otherwise

if z1 := Afa1]d and zo := Aas]d

Rm Semantics and Verification of Software Winter semester 2008,/09 11

Formalizing Constant Propagation Analysis III

Example 19.6

Ifé=(L, 1, 2 T), then
w X y z

(0, 1,2 T) ifB=(w:=0)

=

w X y 4
(3, 1,2 T) if Bl=(w := y+1)

_ w X y -4
PO =N (1. 1,2, T) ifB'=(w := wh)

w X y -4
(T, 1, 2 T) if Bb=(w := z+2)

~— =~

L W X y 4

Semantics and Verification of Software Winter semester 2008,/09 12

Formalizing Constant Propagation Analysis III

Constant Propagation Analysis for

ci=[x := 1]} ¢1((a,b,¢,d)) = (a,1,c,d)
[y == 1% a((a,b,¢,d)) = (a,b,1,d)
[z := 1]%; @3((a,b,¢,d)) = (a,b,¢,1)
while [z > 0]*do ¢a((a,b,¢,d)) = (a,b,¢,d)

[:= x+y]°; ¢s5((a,b,c,d)) = (b+c,b,c,d)
if [W = 2]6 then 906((a7 0@, d)) = (av 0@ d)

[X oS y+2]7 907(((17 b’ ¢, d)) = ((I,C+2,C, d)

Q@ Fixpoint solution (on the board)
© MOP solution (on the board)

Semantics and Verification of Software Winter semester 2008,/09 13

	The MOP Solution
	Another Analysis: Constant Propagation

