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Seminar: Applying Formal Verification Methods

to Embedded Systems

©

Joint weekly Seminar with Embedded Software Laboratory

Theoretical and Practical CS
Topics:
e Static program analysis
e Abstract interpretation
¢ Software model checking (of assembly and source code)
o Analysis of timed behavior
o Resource awareness

©

©

Requirements:
s Vordiplom/Bachelor
o In particular: Automata Theory and Formal Languages
o Helpful: basic knowledge in
¢ this course

o (Formal Methods for) Embedded Systems
@ Model Checking Technology
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@ The MOP Solution
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The MOP Solution I

@ Other solution method for dataflow systems

@ MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Definition 19.1 (Paths)

Let S = (L,E,F,(D,C),t,p) be a dataflow system. For every [ € L,
the set of paths up to [ is given by

Path(l) = {[11,...,lk_1] ‘ k>1,l; € F,
(li,lix1) € F for every 1 <i <k, I}, =1}.

For a path p = [l1,...,lxk—1] € Path(l), we define the transfer function
¢p: D — D by
Ppi=y,_, °...0¢, oidp

(so that ¢ = idp).
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The MOP Solution I1

Definition 19.2 (MOP solution)

Let S = (L,E,F,(D,C),¢,p) be a dataflow system where
L={l,...,l,}. The MOP solution for S is determined by

mop(S) o= (mop(ll)v SRR mop(ln)) S
where, for every [ € L,

mop(l) := |_[{ep(e) | p € Path(1)}.

Remark:
o Path(l) is generally infinite
—> not clear how to compute mop(l)
o In fact: MOP solution generally undecidable (later)
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The MOP Solution III

Example 19.3 (Live Variables; cf. Examples 15.3 and 17.4)

c=[x := 2] = mop(1) = @[7,5,4,3,2(t) U p[7,6432()
[y := 4]%; = pa(p3(a(ps(pr({x,y,2}))))) U
x := 1P ©2(03(pa(ps(r({x,5,2})))))
if [y > 0]4 then = p2(p3(pa(ps({y, 2})))) U
[z := x]° ©2(03(palps({y,2}))))
else = pa(p3(pa({x,y}))) U
[z := y*y]S; p2(p3(pa({y})))
[x := 2|7 = p2(p3({x,y}) U pa(ws({y}))
—> Path(1) = {[7,5,4,3,2] _ ey
[7,6,4,3,2]} — 0
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© Another Analysis: Constant Propagation
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 19.4 (Constant Propagation Analysis)

[x o= 1]
.= 1]2.
FZ[ = H:%, @ y =z =1 at labels 4-7
while [z > 0]* do @ w, x not constant at labels 4-7
[w := x+y]%; @ possible optimizations:
if [w = 2]° then [w = x+1]% [x := 3]
[x := y+2]7
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Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,C),, ) is given by
set of labels L := L,
extremal labels E := {init(c)} (forward problem),
flow relation F' := flow(c) (forward problem),
complete lattice (D, C) where
o D:={6|6: Var. - ZU{L, T}}
@ 0(xz) = z € Z: x has constant value z
@ 0(x) = L: z undefined
@ 0(x) = T: z overdefined (i.e., different possible values)
o CC D x D defined by pointwise extension of 1 C z = T
(for every z € Z)

e 6 ¢ ¢

Semantics and Verification of Software Winter semester 2008,/09



Formalizing Constant Propagation Analysis II

Dataflow system S = (L, E, F,(D,C),t,¢) (continued):
o extremal value ¢ := §1 € D where 67 (z) := T for every z € Var,,

o transfer functions {¢; | [ € L} defined by

(5) == g if B! = skip or B! € BExp
A= ol — Alale] i B' = (@ :=a)
where
= z10p zg if 21,20 € Z
ﬁ%ﬁﬂg _ g( ) Ular op az]d := ¢ L if 21 = Lorz=.1
o T otherwise

if z1 := Afa1]d and zo := Aas]d
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Formalizing Constant Propagation Analysis III

Example 19.6

Ifé=(L, 1, 2 T), then
w X y z

(0, 1,2 T) ifB=(w:=0)

=

w X y 4
(3, 1,2 T) if Bl=(w := y+1)

_ w X y -4
PO =N (1. 1,2, T) ifB'=(w := wh)

w X y -4
(T, 1, 2 T) if Bb=(w := z+2)

~— =~

L W X y 4
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Formalizing Constant Propagation Analysis III

Constant Propagation Analysis for

ci=[x := 1]} ¢1((a,b,¢,d)) = (a,1,c,d)
[y == 1% a((a,b,¢,d)) = (a,b,1,d)
[z := 1]%; @3((a,b,¢,d)) = (a,b,¢,1)
while [z > 0]*do  ¢a((a,b,¢,d)) = (a,b,¢,d)

[ := x+y]°; ¢s5((a,b,c,d)) = (b+c,b,c,d)
if [W = 2]6 then 906((a7 0@, d)) = (av 0@ d)

[X oS y+2]7 907(((17 b’ ¢, d)) = ((I,C+2,C, d)

Q@ Fixpoint solution (on the board)
© MOP solution (on the board)
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