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The MOP Solution I

@ Other solution method for dataflow systems

@ MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Definition (Paths)

Let S = (L,E,F,(D,C),t,p) be a dataflow system. For every [ € L,
the set of paths up to [ is given by

Path(l) = {[11,...,lk_1] ‘ k>1,l; € F,
(li,lix1) € F for every 1 <i <k, I}, =1}.

For a path p = [l1,...,lxk—1] € Path(l), we define the transfer function
¢p: D — D by
Ppi=y,_, °...0¢, oidp

(so that ¢ = idp).
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The MOP Solution I1

Definition (MOP solution)

Let S = (L,E,F,(D,C),¢,p) be a dataflow system where
L={l,...,l,}. The MOP solution for S is determined by

mop(S) o= (mop(ll)v SRR mop(ln)) S
where, for every [ € L,

mop(l) := |_[{ep(e) | p € Path(1)}.

Remark:
o Path(l) is generally infinite
—> not clear how to compute mop(l)
o In fact: MOP solution generally undecidable (later)
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© Repetition: Constant Propagation
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Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,C),, ) is given by
set of labels L := L,
extremal labels E := {init(c)} (forward problem),
flow relation F' := flow(c) (forward problem),
complete lattice (D, C) where
o D:={6|6: Var. - ZU{L, T}}
@ 0(xz) = z € Z: x has constant value z
@ 0(x) = L: z undefined
@ 0(x) = T: z overdefined (i.e., different possible values)
o CC D x D defined by pointwise extension of 1 C z = T
(for every z € Z)

e 6 ¢ ¢
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Formalizing Constant Propagation Analysis II

Dataflow system S = (L, E, F,(D,C),t,¢) (continued):
o extremal value ¢ := §1 € D where 67 (z) := T for every z € Var,,

o transfer functions {¢; | [ € L} defined by

(5) == g if B! = skip or B! € BExp
A= ol — Alale] i B' = (@ :=a)
where
= z10p zg if 21,20 € Z
ﬁ%ﬁﬂg _ g( ) Ular op az]d := ¢ L if 21 = Lorz=.1
o T otherwise

if z1 := Afa1]d and zo := Aas]d

Rm Semantics and Verification of Software Winter semester 2008,/09 7



Formalizing Constant Propagation Analysis III

Ifé=(L, 1, 2 T), then
w X y z

(0, 1,2 T) ifB=(w:=0)

=

w X y 4
(3, 1,2 T) if Bl=(w := y+1)

_ w X y -4
PO =N (1. 1,2, T) ifB'=(w := wh)

w X y -4
(T, 1, 2 T) if Bb=(w := z+2)

~— =~

L W X y 4
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© Undecidability of the MOP Solution
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Undecidability of the MOP Solution

Theorem 20.1 (Undecidability of MOP solution)
The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let T" be some alphabet, n € N, and u1, ..., up, v1,...,0, € I'T.
Does there exist i1,...,4%, € {1,...,n} with m > 1 and i1 = 1 such

that w;, us, . .. s, = V3, Viy ... i, "7

(on the board) O
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@ MOP vs. Fixpoint Solution
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MOP vs. Fixpoint Solution I

Theorem 20.2 (MOP vs. Fixpoint Solution)

Let S = (L,E,F,(D,C),t,¢) be a dataflow system. Then

mop(S) C fix(Pg)

on the board O

The next example shows that both solutions can indeed be different.
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MOP vs. Fixpoint Solution II

Example 20.3 (Constant Propagation)

>
E = g’}g @ Fixpoint solution:
else ’ CPi =1 =(T,T,T)
[X - 3’]4 CPQ = <p1(CP1) = (T,T,T)
[Y - 2,]5 C g = (,OQ(CPQ) = (2,T,T)
[Z o= X+y;]6 CP4 — gol(CPl) — (T,T,T)
L CP5 = 2(CP») =(3,T,T)
T CP(; = <p3(CP3) L (p5(CP5)
Transfer functions =(2,3, T)U (3,2, T)=(T,T,T)
(for & = (0(x),d(y),d(z)) € D): CP7 = p6(CPs) =(T,T,T)
@1((&7@ C)) = (OJ)va 8 o
oa(la.b.c)) = (2b, c; © MOP solution:
@a(a,b,)) = (a3,0) R = sl LI
ea((a,b,)) = (3,b,¢) sl T-1)
e5((a,b,¢) = (a,2,¢) = (23,5)1(3,2,5)
26((a.b,¢)) = (a,b,a+b) =T T.5
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Distributive Transfer Functions I

A sufficient criterion for the coincidence of MOP and Fixpoint Solution
is the distributivity of the transfer functions.

Definition 20.4 (Distributivity)

o Let (D,C) and (D’,C') be complete lattices, and let F: D — D'.
F is called distributive (w.r.t. (D,C) and (D',C")) if, for every
di,ds € D,

F(dl Up dg) = F(dl) L pr F(dg)

o A dataflow system S = (L, E, F, (D, ), ¢, ¢) is called distributive

if every ¢; : D — D (I € L) is so.
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Distributive Transfer Functions I1
Example 20.5

@ The Available Expressions dataflow system is distributive:

((A1 N Ag) \ killag(B')) U genag (B
((A1 \ killag(B")) U genpg(Bh) N
((Az \ killag(B')) U genpg(B'))

= (A1) U (A2)

wi(Ag U Ag)

@ The Live Variables dataflow system is distributive (similar)

© The Constant Propagation dataflow system is not distributive:

(T, T,T) = @2y ((2,3, T) LU (3,2, T))
((2,3,T)) Upz:=x+y((3,2, T))
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Coincidence of MOP and Fixpoint Solution

Theorem 20.6 (MOP vs. Fixpoint Solution)

Let S = (L,E,F,(D,C),¢,p) be a distributive dataflow system. Then

mop(S) = fix(Pg)

@ by showing that ®g(mop(.S)) = mop(S) ...
(see [Nielson/Nielson/Hankin 2005, p. 81])

o ... and using mop(S) C fix(®g) (Theorem 20.2)
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