Semantics and Verification of Software

Lecture 21: Dataflow Analysis VIII
(Interprocedural MVP Solution)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Interprocedural Dataflow Analysis

Rm Semantics and Verification of Software ter semester 2008

Overview

@ So far: only intraprocedural analyses (i.e., without user-defined
functions or procedures)

Rm Semantics and fication of Software Winter semester 2008

Overview

@ So far: only intraprocedural analyses (i.e., without user-defined
functions or procedures)

@ Now: interprocedural dataflow analysis

Rm Semantics and fication of Software Winter semester 2008

Overview

@ So far: only intraprocedural analyses (i.e., without user-defined
functions or procedures)

@ Now: interprocedural dataflow analysis

o Complications:

@ correct matching between calls and returns
¢ parameter passing (aliasing effects)

Rm Semantics and fication of Software Winter semester 2008

Overview

©

©

So far: only intraprocedural analyses (i.e., without user-defined
functions or procedures)

Now: interprocedural dataflow analysis

Complications:

o
o

correct matching between calls and returns
parameter passing (aliasing effects)

Here: simple setting
o only top-level declarations, no blocks or nested declarations

¢ ¢ ¢

mutually recursive procedures

one call-by-value and one call-by-result parameter
extension to multiple and call-by-value-result parameters
straightforward

Semantics and Verification of Software Winter semester 2008,/09

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec P
Commands (statements) Cmd c

Rm Semantics and Verification of Software Winter semester 2008,/09

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec P
Commands (statements) Cmd c

Context-free grammar:

p == proc [P(val x,res y)]'" is c [end]’;p | & € PDec
c = [skip]' | [z :=a]' | e1;ca | if [b]' then 1 else ¢y |

while [b)! do c | [call P(a,.’li)];:‘_ € Cmd

Rm Semantics and Verification of Software Winter semester 2008,/09

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec P
Commands (statements) Cmd c

Context-free grammar:
p == proc [P(val x,res y)]'" is c [end]’;p | & € PDec
c = [skip]' | [z :=a]' | e1;ca | if [b]' then 1 else ¢y |
while [b]! do c | [call P((L,.’L’)];:‘_ e Omd

©

All labels and procedure names in program p ¢ distinct

In proc [P(val z,res y)|'" is c [end]s, I,, (I;) refers to the entry
(exit) of P

In [call P(a,m)]ﬁj, lo (1) refers to the call of (return from) P
Static scoping of procedures

©

First parameter call-by-value, second call-by-result

Rm Semantics and Verification of Software Winter semester 2008,/09 4

An Example

Example 21.1 (Fibonacci numbers)

(with extension by multiple call-by-value parameters)

proc [Fib(val x, y, res z)|! is
if [x<2]? then
[z := y+1]°
else
[call Fib(x-1, y, z)]s;
[call Fib(x-2, z, 2)]$;
[end]®;
[call Fib(5, 0, W]},

m Semantics and Verification of Software Winter semester 2008,/09 5

Procedure Flow Graphs

Definition 21.2 (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:
init([call P(a, x)])=l
final([call P(a, x)] °) = {l+}
flow([call P(a, x)]lc) = {(le; 1), (g3 1)}

init(proc [P(val z,res y)]'" is c [end)’*) := I
final(proc [P(val x,res y)]™ is ¢ [end]) := {
flow(proc [P(val z,res y))' is c [end]') := {(I,, init(c))}. U

{(1,13) | I € final(c)}

if proc [P(val xz,res y)] is ¢ [end]’ is in p.

m' Semantics and Verification of Software Winter semester 2008,/09

Procedure Flow Graphs

Definition 21.2 (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:
init([call P(a, x)])=l
final([call P(a, x)] °) = {l+}
flow([call P(a, x)]lc) = {(le; 1), (g3 1)}

init(proc [P(val x,res y)]'" is c [end]) := I
final(proc [P(val z,res y)]'* is c [end]™s) := {
flow(proc [P(val z,res y)]' is c [end]) := E

n

s
(n, int(c))} U
(I,13) | 1 € final(c)}

if proc [P(val xz,res y)] is ¢ [end]’ is in p.

Moreover the interprocural flow of a program pc is defined by
IF :={(l¢,ln, s, 1) | pc contains [call P(a,x)]k and
proc [P(val z,res y)]!» is ¢ [end)} C L*

m Semantics and Verification of Software Winter semester 2008,/09

Procedure Flow Graphs

Example 21.3 (Fibonacci numbers)

Flow graph of

proc [Fib(val x, y, res z)|! is
if [x<2]? then
[z := y+1]’
else
[call Fib(x-1, y, z)]s;
[call Fib(x-2, z, 2)]$;
[end]?;
[call Fib(5, 0, W]},

(on the board)

m' Semantics and Verification of Software

Winter semester 2008,/09

Procedure Flow Graphs

Example 21.3 (Fibonacci numbers)

Flow graph of

proc [Fib(val x, y, res z)|! is
if [x<2]? then
[z := y+1]’
else
[call Fib(x-1, y, z)]s;
[call Fib(x-2, z, 2)]$;
[end]?;
[call Fib(5, 0, W]},

(on the board)

Here IF = {(9,1,8,10), (4,1,8,5),(6,1,8,7)}

m' Semantics and Verification of Software

Winter semester 2008,/09

© Intraprocedural vs. Interprocedural Analysis

Rm Semantics and Verification of Software ter semester 2008

Naive Formulation I

o Attempt: directly transfer techniques from intraprocedural
analysis
= treat (Io;ly) like (I.,1,) and (Iz;1,) like (Iz, 1)

Rm Semantics and Verification of Software Winter semester 2008,/09 9

Naive Formulation I

o Attempt: directly transfer techniques from intraprocedural
analysis
= treat (Io;ly) like (I.,1,) and (Iz;1,) like (Iz, 1)

o Given: dataflow system S = (L, E, F,(D,C), ¢,)

Rm Semantics and Verification of Software Winter semester 2008,/09 9

Naive Formulation I

o Attempt: directly transfer techniques from intraprocedural
analysis
= treat (Io;ly) like (I.,1,) and (Iz;1,) like (Iz, 1)
o Given: dataflow system S = (L, E, F,(D,C), ¢,)
e For each procedure call [call P(a, ;v)]gj
transfer functions ¢y, ¢y, : D — D (definition later)
o For each procedure declaration
proc [P(val z,res)] is ¢ [end]’:
transfer functions ¢y, , ¢, : D — D (definition later)

Rm Semantics and Verification of Software Winter semester 2008,/09

Naive Formulation I

Attempt: directly transfer techniques from intraprocedural
analysis

= treat (Io;ly) like (I.,1,) and (Iz;1,) like (Iz, 1)

Given: dataflow system S = (L, E, F,(D,C), ¢, p)

For each procedure call [call P(a, ;v)]gj

transfer functions ¢y, ¢y, : D — D (definition later)
For each procedure declaration

proc [P(val z,res)] is ¢ [end]’:

transfer functions ¢y, , ¢, : D — D (definition later)
Induces equation system

-]

L iflek
LI{ewv(Aly) | (I',1) € For (I';1) € F} otherwise

Rm Semantics and Verification of Software Winter semester 2008,/09

Naive Formulation I

Attempt: directly transfer techniques from intraprocedural

analysis

= treat (Io;ly) like (I.,1,) and (Iz;1,) like (Iz, 1)

Given: dataflow system S = (L, E, F,(D,C), ¢, p)

For each procedure call [call P(a, x)]gj

transfer functions ¢y, ¢y, : D — D (definition later)

For each procedure declaration

proc [P(val z,res)] is ¢ [end]’:

transfer functions ¢y, , ¢, : D — D (definition later)

Induces equation system

Al — {L ifl e E

LI{ewv(Aly) | (I',1) € For (I';1) € F} otherwise

Problem: procedure calls (I:;1,,) and procedure returns (I,;1,)

treated like goto’s

— nesting of calls and returns ignored

—> too many paths

— analysis information imprecise (but still correct)

m' Semantics and Verification of Software Winter semester 2008,/09

Naive Formulation 11

Example 21.4 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is
if [x<2]? then
[z := y+1]°
else
[call Fib(x-1, y, z)]3;
[call Fib(x-2, z, 2)]$;
[end]®;
[call Fib(5, 0, v},

m Semantics and Verification of Software

Winter semester 2008,/09 10

Naive Formulation 11

Example 21.4 (Fibonacci numbers)

proc [Fib(val x, y, res z)]! is
if [x<2]? then 1 1
z = y+1]3 @ “Valid” path:
else [9,1,2,3,8,10]
[call Fib(x-1, y, z)]3;
[call Fib(x-2, z, 2)]$;
[end]®;
[call Fib(5, 0,)]},

m Semantics and Verification of Software

Winter semester 2008,/09 10

Naive Formulation 11

Example 21.4 (Fibonacci numbers)

proc [Fib(val x, y, res z)]! is
if [x<2]? then

[z := y+1]3 o “Valid” path:

clse [9,1,2,3,8,10]
[call Fib(x-1, y, z)]3; o “Invalid” path:
[call Fib(x-2, z, z)]%; [9,1,2,4,1,2,3,8,10]

[end]®;
[call Fib(5, 0, v},

m Semantics and Verification of Software Winter semester 2008,/09 10

Naive Formulation II1

Example 21.5 (Impreciness of information)

proc [P(val x, res y)|' is
= =P
[end]?;
if [y=0]* then
[call P(1, Y]3;
ly :=y-1°
else
[call P(2, VI]5;
y := y-2'%
[skip]"!

m Semantics and Verification of Software Winter semester 2008,/09 11

Naive Formulation II1

Example 21.5 (Impreciness of information)

proc [P(val x, res y)|! is Two “valid” and two “invalid” paths:
[y := x]? e Valid: [4,5,1,2,3,6,7,11]
[end]?; = y =0 at label 11
if [y=0]* then
[call P(1, Y]3;
ly :=y-1°
else
[call P(2, Y]5;
y := y-2'%
[skip]"!

m Semantics and Verification of Software Winter semester 2008,/09 11

Naive Formulation II1

Example 21.5 (Impreciness of information)

proc [P(val x, res y)|! is Two “valid” and two “invalid” paths:

[y i= 2 o Valid: [4,5,1,2,3,6,7,11]
[.end]?); \ = y =0 at label 11
1f[[y=lfi] Pt(lien s o Valid: [4,8,1,2,3,9,10,11]
ca > Ylgs — y =0 at label 11
y = y-1 ’
else
[call P(2, VI]5;
v := y-2%
[skip]™

m Semantics and Verification of Software Winter semester 2008,/09 11

Naive Formulation II1

Example 21.5 (Impreciness of information)

proc [P(val x, res y)|! is Two “valid” and two “invalid” paths:

[y := x? e Valid: [4,5,1,2,3,6,7,11]
[end]?; , = y =0 at label 11
if [y=0] t(lien . o Valid: [4,8,1,2,3,9,10,11]
Ea}i ;_1]’7 K = y =0 at label 11
clse o Invalid: [4,5,1,2,3,9,10,11]
[call P(2, VI]5; — y = —1 at label 11
y := y-2"
[skip]"!

m Semantics and Verification of Software Winter semester 2008,/09 11

Naive Formulation II1

Example 21.5 (Impreciness of information)

proc [P(val x, res y)|! is Two “valid” and two “invalid” paths:

[y := x]? e Valid: [4,5,1,2,3,6,7,11]
[end]?; , = y =0 at label 11
if [y=lfi] Pt(lien 5. o Valid: [4,8,1,2,3,9,10,11]
ga: y—1],7 K = y =0 at label 11
clse o Invalid: [4,5,1,2,3,9,10,11]
[call P(2,1 IS; — y = —1 at label 11
[y = y-2)1%; o Invalid: [4,8,1,2,3,6,7,11]
[skip] = y =1 at label 11

m Semantics and Verification of Software Winter semester 2008,/09 11

© The MVP Solution

Rm Semantics and Verification of Software ter semester 2008

Valid Paths I

o Consider only paths with correct nesting of procedure calls and
returns

o Will yield MVP solution (Meet over all Valid Paths)

Definition 21.6 (Valid paths I)

Given a dataflow system S = (L, E, F, (D,C),¢,¢) and ly,ly € L, the
set of valid paths from [; to ls is generated by the nonterminal symbol
P[l1,12] according to the following productions:

Pll1,lo) = 14 whenever 1 = [y
P[ll,lg] — ll,P[lg,lg] whenever (ll,lg) eF
Pl[l., 1) — l., Plly, 1., P[ly,1] whenever (I, 1y, 1, 1.) € [F

m Semantics and Verification of Software Winter semester 2008,/09 13

Valid Paths 11

Example 21.7 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is
if [x<2]? then
2 = yeif
else
[call Fib(x-1, y, 2)]3;
[call Fib(x-2, z, 2)]%;
[end]®;
[call Fib(5, 0,)]},

Grammar for P[9,10]:
on the board

m Semantics and Verification of Software Winter semester 2008,/09 14

Valid Paths 11

Example 21.7 (Fibonacci numbers)

proc [Fib(val x, y, res z)]! is
if [x<2]? then

[z := y+1]3 Thus
else
[call Fib(x-1, y, 2)]3; [9,1,2,3,8,10] € L(P[9,10])
[call Fib(x-2, z, z)]%;
[end]8; but

[call Fib(5, 0, W]},
9,1,2,4,1,2,3,8,10] ¢ L(PI[9,10])

Grammar for P[9,10]:
on the board

m Semantics and Verification of Software Winter semester 2008,/09 14

The M VP Solution 1

Definition 21.8 (Valid paths II)

Let S = (L,E,F,(D,C),t,p) be a dataflow system. For every [€ L,
the set of valid paths up to [is given by

VPath(l) := {[l1, . o] | k> 1,01 € B, Iy = 1,
[l1,...,l;] prefix of a valid path}.

For a path p = [l1,...,lx—1] € VPath(l), we define the transfer function
¢op: D — D by
@p =i _,°...0¢ oidp

(so that ¢ = idp).

m' Semantics and Verification of Software Winter semester 2008,/09 15

The M VP Solution I1

Definition 21.9 (MVP solution)

Let S = (L,E,F,(D,C),¢,) be a dataflow system where
L={l,...,l,}. The MVP solution for S is determined by
mvp(S) := (mvp(ly),...,mvp(l,)) € D"
where, for every [€ L,
mvp(l) i= LHp() | p € VPath(D)}.

m' Semantics and Verification of Software Winter semester 2008,/09 16

The M VP Solution I1

Definition 21.9 (MVP solution)

Let S = (L,E,F,(D,C),¢,) be a dataflow system where
L={l,...,l,}. The MVP solution for S is determined by
mvp(S) := (mvp(ly),...,mvp(l,)) € D"
where, for every [€ L,
mvp(l) i= LHp() | p € VPath(D)}.

@ mvp(S) C mop(S)
© The MVP solution is undecidable.

m Semantics and Verification of Software Winter semester 2008,/09 16

The M VP Solution I1

Definition 21.9 (MVP solution)

Let S = (L,E,F,(D,C),¢,) be a dataflow system where
L={l,...,l,}. The MVP solution for S is determined by
mvp(S) := (mvp(ly),...,mvp(l,)) € D"
where, for every [€ L,
mvp(l) i= LHp() | p € VPath(D)}.

Corollary 21.10
Q@ mvp(S) C mop(S)
Q The MVP solution s undecidable.)

Proof.
Q since VPath(l) C Path(l) for every | € L
© by undecidability of MOP solution

m Semantics and Verification of Software Winter semester 2008,/09

	Interprocedural Dataflow Analysis
	Intraprocedural vs. Interprocedural Analysis
	The MVP Solution

