
Semantics and Verification of Software

Lecture 21: Dataflow Analysis VIII
(Interprocedural MVP Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Interprocedural Dataflow Analysis

2 Intraprocedural vs. Interprocedural Analysis

3 The MVP Solution

Semantics and Verification of Software Winter semester 2008/09 2

Overview

So far: only intraprocedural analyses (i.e., without user-defined
functions or procedures)

Now: interprocedural dataflow analysis

Complications:

correct matching between calls and returns
parameter passing (aliasing effects)

Here: simple setting

only top-level declarations, no blocks or nested declarations
mutually recursive procedures
one call-by-value and one call-by-result parameter
extension to multiple and call-by-value-result parameters
straightforward

Semantics and Verification of Software Winter semester 2008/09 3

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context-free grammar:

p ::= proc [P (val x, res y)]ln is c [end]lx;p | ε ∈ PDec

c ::= [skip]l | [x := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [call P (a, x)]lclr ∈ Cmd

All labels and procedure names in program p c distinct

In proc [P (val x, res y)]ln is c [end]lx , ln (lx) refers to the entry
(exit) of P

In [call P (a, x)]lclr , lc (lr) refers to the call of (return from) P

Static scoping of procedures

First parameter call-by-value, second call-by-result

Semantics and Verification of Software Winter semester 2008/09 4

An Example

Example 21.1 (Fibonacci numbers)

(with extension by multiple call-by-value parameters)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

Semantics and Verification of Software Winter semester 2008/09 5

Procedure Flow Graphs

Definition 21.2 (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:
init([call P (a, x)]lc

lr
) := lc

final([call P (a, x)]lclr) := {lr}

flow([call P (a, x)]lclr) := {(lc; ln), (lx; lr)}

init(proc [P (val x, res y)]ln is c [end]lx) := ln
final(proc [P (val x, res y)]ln is c [end]lx) := {lx}
flow(proc [P (val x, res y)]ln is c [end]lx) := {(ln, init(c))} ∪

{(l, lx) | l ∈ final(c)}

if proc [P (val x, res y)]ln is c [end]lx is in p.

Moreover the interprocural flow of a program p c is defined by
IF := {(lc, ln, lx, lr) | p c contains [call P (a, x)]lclr and

proc [P (val x, res y)]ln is c [end]lx} ⊆ L4

Semantics and Verification of Software Winter semester 2008/09 6

Procedure Flow Graphs

Example 21.3 (Fibonacci numbers)

Flow graph of

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

(on the board)

Here IF = {(9, 1, 8, 10), (4, 1, 8, 5), (6, 1, 8, 7)}

Semantics and Verification of Software Winter semester 2008/09 7

Outline

1 Interprocedural Dataflow Analysis

2 Intraprocedural vs. Interprocedural Analysis

3 The MVP Solution

Semantics and Verification of Software Winter semester 2008/09 8

Naive Formulation I

Attempt: directly transfer techniques from intraprocedural
analysis
=⇒ treat (lc; ln) like (lc, ln) and (lx; lr) like (lx, lr)
Given: dataflow system S = (L, E, F, (D,⊑), ι, ϕ)
For each procedure call [call P (a, x)]lclr :
transfer functions ϕlc , ϕlr : D → D (definition later)
For each procedure declaration
proc [P (val x, res y)]ln is c [end]lx :
transfer functions ϕln , ϕlx : D → D (definition later)
Induces equation system

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F or (l′; l) ∈ F} otherwise

Problem: procedure calls (lc; ln) and procedure returns (lx; lr)
treated like goto’s
=⇒ nesting of calls and returns ignored
=⇒ too many paths
=⇒ analysis information imprecise (but still correct)

Semantics and Verification of Software Winter semester 2008/09 9

Naive Formulation II

Example 21.4 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

“Valid” path:
[9, 1, 2, 3, 8, 10]

“Invalid” path:
[9, 1, 2, 4, 1, 2, 3, 8, 10]

Semantics and Verification of Software Winter semester 2008/09 10

Naive Formulation III

Example 21.5 (Impreciness of information)

proc [P(val x, res y)]1 is

[y := x]2

[end]3;
if [y=0]4 then

[call P(1, y)]56;
[y := y-1]7

else

[call P(2, y)]89;
[y := y-2]10;

[skip]11

Two “valid” and two “invalid” paths:

Valid: [4, 5, 1, 2, 3, 6, 7, 11]
=⇒ y = 0 at label 11

Valid: [4, 8, 1, 2, 3, 9, 10, 11]
=⇒ y = 0 at label 11

Invalid: [4, 5, 1, 2, 3, 9, 10, 11]
=⇒ y = −1 at label 11

Invalid: [4, 8, 1, 2, 3, 6, 7, 11]
=⇒ y = 1 at label 11

Semantics and Verification of Software Winter semester 2008/09 11

Outline

1 Interprocedural Dataflow Analysis

2 Intraprocedural vs. Interprocedural Analysis

3 The MVP Solution

Semantics and Verification of Software Winter semester 2008/09 12

Valid Paths I

Consider only paths with correct nesting of procedure calls and
returns

Will yield MVP solution (Meet over all Valid Paths)

Definition 21.6 (Valid paths I)

Given a dataflow system S = (L, E, F, (D,⊑), ι, ϕ) and l1, l2 ∈ L, the
set of valid paths from l1 to l2 is generated by the nonterminal symbol
P [l1, l2] according to the following productions:

P [l1, l2] → l1 whenever l1 = l2
P [l1, l3] → l1, P [l2, l3] whenever (l1, l2) ∈ F
P [lc, l] → lc, P [ln, lx], P [lr, l] whenever (lc, ln, lx, lr) ∈ IF

Semantics and Verification of Software Winter semester 2008/09 13

Valid Paths II

Example 21.7 (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

Grammar for P [9, 10]:
on the board

Thus

[9, 1, 2, 3, 8, 10] ∈ L(P [9, 10])

but

[9, 1, 2, 4, 1, 2, 3, 8, 10] /∈ L(P [9, 10])

Semantics and Verification of Software Winter semester 2008/09 14

The MVP Solution I

Definition 21.8 (Valid paths II)

Let S = (L, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every l ∈ L,
the set of valid paths up to l is given by

VPath(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E, lk = l,
[l1, . . . , lk] prefix of a valid path}.

For a path p = [l1, . . . , lk−1] ∈ VPath(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Winter semester 2008/09 15

The MVP Solution II

Definition 21.9 (MVP solution)

Let S = (L, E, F, (D,⊑), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MVP solution for S is determined by

mvp(S) := (mvp(l1), . . . ,mvp(ln)) ∈ Dn

where, for every l ∈ L,
mvp(l) :=

⊔

{ϕp(ι) | p ∈ VPath(l)}.

Corollary 21.10

1 mvp(S) ⊑ mop(S)

2 The MVP solution is undecidable.

Proof.
1 since VPath(l) ⊆ Path(l) for every l ∈ L

2 by undecidability of MOP solution

Semantics and Verification of Software Winter semester 2008/09 16

	Interprocedural Dataflow Analysis
	Intraprocedural vs. Interprocedural Analysis
	The MVP Solution

