Semantics and Verification of Software

Lecture 22: Dataflow Analysis IX
(Interprocedural Fixpoint Solution)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Repetition: Interprocedural Dataflow Analysis

Rm Semantics and Verification of Software ter semester 2008

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec P
Commands (statements) Cmd c

Context-free grammar:
p = proc [P(val z,res y)|'" is ¢ [end]’;p | ¢ € PDec
c = [skip)' | [z :=a]' | c1;co | if [b]' then ¢; else c3 |
while [b]' do c| [call P(a,x)]; € Cmd

All labels and procedure names in program p ¢ distinct

In proc [P(val z,res y)|'" is c [end]s, I, (I;) refers to the entry
(exit) of P
In [call P(a,x)]ﬁ:, l. (1) refers to the call of (return from) P

First parameter call-by-value, second call-by-result

©

©

Rm Semantics and Verification of Software Winter semester 2008,/09

Procedure Flow Graphs

Definition (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:
init([call P(a, x)])=l
final([call P(a, x)] °) = {l+}
flow([call P(a, x)]lc) = {(le; 1), (g3 1)}

init(proc [P(val x,res y)]'" is c [end]) := I
final(proc [P(val z,res y)]'* is c [end]™s) := {
flow(proc [P(val z,res y)]' is c [end]) := E

n

s
(n, int(c))} U
(I,13) | 1 € final(c)}

if proc [P(val xz,res y)] is ¢ [end]’ is in p.

Moreover the interprocural flow of a program pc is defined by
IF :={(l¢,ln, s, 1) | pc contains [call P(a,x)]k and
proc [P(val z,res y)]!» is ¢ [end)} C L*

m Semantics and Verification of Software Winter semester 2008,/09

Naive Formulation

Example (Fibonacci numbers)

proc [Fib(val x, y, res z)]! is

if [x<2]? then .
[z := y+1]3 o “Valid” path:

Sl 9,1,2,3,8,10]
[call Fib(x-1, y, z)]3; o “Invalid” path:
[8ca11 Fib(x-2, z, 2)|%; [9,1,2,4,1,2,3,8,10]

[end]®;

[call Fib(5, 0, v},

m Semantics and Verification of Software Winter semester 2008,/09 5

Valid Paths I

o Consider only paths with correct nesting of procedure calls and
returns

o Will yield MVP solution (Meet over all Valid Paths)

Definition (Valid paths I)

Given a dataflow system S = (L, E, F, (D,C),¢,¢) and ly,ly € L, the
set of valid paths from [; to ls is generated by the nonterminal symbol
P[l1,12] according to the following productions:

Pll1,lo) = 14 whenever 1 = [y
P[ll,lg] — ll,P[lg,lg] whenever (ll,lg) eF
Pl[l., 1) — l., Plly, 1., P[ly,1] whenever (I, 1y, 1, 1.) € [F

m Semantics and Verification of Software Winter semester 2008,/09 6

The M VP Solution 1

Definition (Valid paths II)

Let S = (L,E,F,(D,C),t,p) be a dataflow system. For every [€ L,
the set of valid paths up to [is given by

VPath(l) := {[l1, . o] | k> 1,01 € B, Iy = 1,
[l1,...,l;] prefix of a valid path}.

For a path p = [l1,...,lx—1] € VPath(l), we define the transfer function
¢op: D — D by
@p =i _,°...0¢ oidp

(so that ¢ = idp).

m' Semantics and Verification of Software Winter semester 2008,/09

The M VP Solution I1

Definition (MVP solution)

Let S = (L,E,F,(D,C),¢,) be a dataflow system where

L={l,...,l,}. The MVP solution for S is determined by
mvp(S) := (mvp(ly),...,mvp(l,)) € D"

where, for every [€ L,
mvp(l) := [{ep(t) | p € VPath(l)}.

Corollary
Q@ mvp(S) C mop(S)
Q The MVP solution s undecidable.

A,

Proof.
Q since VPath(l) C Path(l) for every | € L
© by undecidability of MOP solution

A,

Semantics and Verification of Software Winter semester 2008,/09 8

© The Interprocedural Fixpoint Solution

Rm Semantics and Verification of Software ter semester 2008

Making Context Explicit

o Goal: adapt fixpoint solution to avoid invalid paths

Rm Semantics and Verification of Software Winter semester 2008,/09 10

Making Context Explicit

o Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

Rm Semantics and Verification of Software Winter semester 2008,/09 10

Making Context Explicit

o Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

@ Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

Rm Semantics and Verification of Software Winter semester 2008,/09 10

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

©

Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

@ call: computes new topmost entry from current and pushes it

Rm Semantics and Verification of Software Winter semester 2008,/09

Making Context Explicit

o Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

@ Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

@ call: computes new topmost entry from current and pushes it

@ return: removes topmost entry and combines it with underlying
entry

Rm Semantics and Verification of Software Winter semester 2008,/09 10

The Interprocedural Extension 1

Definition 22.1 (Interprocedural extension (forward analysis))

Let S = (L,E,F,(D,C),t,p) be a dataflow system. The
interprocedural extension of S is given by
S = (L7 E7 F7 ('D7 E)? 27 @)

where
o D:=Dt
ody...d, Cdy...d iff d; C d, forevery 1<i<n
@ l:=1€ Dt
o foreach I € L\ {l¢,ln, Ly, 1y | (leyln,y 1z, 1) € IFY,

@y DT — D7 is given by ¢;(dw) = ¢y (d)w
for each (I.,lp,1z,1,) € IF, ¢, : D™ — D7 is given by

©

o ¢ (dw) := ¢, (d)dw

o ¢ (w) :=w

o ¢ (w) :=w

o P (ddw) = ¢, (d, d)w

m' Semantics and Verification of Software Winter semester 2008,/09

The Interprocedural Extension 11

Remark: the schema

Q @i (dw) = ¢y (d)dw

Q ¢, (w) =w

Q 4, (w):=w

Q ¢, (ddw) = ¢ (d,d)w
can be generalized by allowing a modification of the topmost entry in
2. and 3. (local variables, ...)

Rm Semantics and Verification of Software Winter semester 2008,/09 12

The Interprocedural Extension III

Example 22.2 (Constant Propagation (cf. Lecture 19))
S .= (L, E, F, (15, £),7,¢) is determined by

e D:={0|0:Varc - ZU{L,T}}

o LCzCT

@ L:=0T7€D
for each i € L\ {lc,ln, 1z, 0 | (e, ln, 1z, 1) € IF},

8) = 0 if B! = skip or B! € BExp
PIO) = Sz — A[a]d] if B! = (z :=a)

whenever p ¢ contains [call P(a, z)]ij and

©

©

proc [P(val z,res y)|'" is c [end]',
o call: set input parameter and reset output parameter
1. (0) := d[z — Ala]d,y — T]
e return: propagate output parameter to caller by overwriting old
value

@1,.(0',6) := 0]z — &' (y)]

m' Semantics and Verification of Software Winter semester 2008,/09

© The Equation System

Rm Semantics and Verification of Software inter semester 2008

The Equation System I

For an interprocedural dataflow system S := (L,E,F, (15, £),i,¢), the
intraprocedural equation system

Al = 2 ifle B
P er (Aly) | (1) € F} - otherwise

is extended to a system with three kinds of equations
(for every | € L):
o for actual dataflow information: Al; € DT
(extension of intraprocedural Al)
o for transfer functions of single nodes: f; : D™ — DT
(extension of intraprocedural transfer functions)
o for transfer functions of complete procedures: Fj : D¥ — DT
(Fj(w) yields information at [if surrounding procedure is called
with information w == full procedure represented by Fj,)

Rm Semantics and Verification of Software Winter semester 2008,/09

The Equation System II

Formal definition:

L ifle B
Al = U2 (AL) [(e o Loy by) € TF} i L= 1y
for some (l¢,lp, 1z, 1) € I[F
LI{fv(Aly) | (I')1) € F'} otherwise
(if [not an exit label)

fi(w) = &, (Fp, (@1, (w))) if I =1, for some (¢, ln, 1z, 1) € IF
0P = 9 ¢(w) otherwise

w ifl=1,
Fi(w) = for some (l¢,ly, 1y, 1) € IF

LS (Fr(w)) | (I',1) € F'} otherwise
(if I occurs in procedure)

m' Semantics and Verification of Software Winter semester 2008,/09

The Equation System II

Formal definition:

L ifle B
Al = U2 (AL) [(e o Loy by) € TF} i L= 1y
for some (l¢,lp, 1z, 1) € I[F
LI{fv(Aly) | (I')1) € F'} otherwise
(if [not an exit label)

fi(w) = &, (Fp, (@1, (w))) if I =1, for some (¢, ln, 1z, 1) € IF
! T @i(w) otherwise
w ifl=1,
Fi(w) = for some (l¢,ly, 1y, 1) € IF

LS (Fr(w)) | (I',1) € F'} otherwise
(if I occurs in procedure)

As before: induces monotonic functional on lattice with ACC
= least fixpoint effectively computable

m' Semantics and Verification of Software Winter semester 2008,/09

The Equation System III

Example 22.3 (Constant Propagation)

proc [P(val x, res y)|' is
[y := 2*(X—1)]2;

[end]3;

[call P(2, z)]3;

[call P(z, 2)]%;

[skip]®

m' Semantics and Verification of Software

Winter semester 2008,/09

	Repetition: Interprocedural Dataflow Analysis
	The Interprocedural Fixpoint Solution
	The Equation System

