
Semantics and Verification of Software

Lecture 22: Dataflow Analysis IX
(Interprocedural Fixpoint Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Repetition: Interprocedural Dataflow Analysis

2 The Interprocedural Fixpoint Solution

3 The Equation System

Semantics and Verification of Software Winter semester 2008/09 2

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context-free grammar:

p ::= proc [P (val x, res y)]ln is c [end]lx;p | ε ∈ PDec

c ::= [skip]l | [x := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [call P (a, x)]lc
lr
∈ Cmd

All labels and procedure names in program p c distinct

In proc [P (val x, res y)]ln is c [end]lx , ln (lx) refers to the entry
(exit) of P

In [call P (a, x)]lclr , lc (lr) refers to the call of (return from) P

First parameter call-by-value, second call-by-result

Semantics and Verification of Software Winter semester 2008/09 3

Procedure Flow Graphs

Definition (Procedure flow graphs)

The auxiliary functions init, final, and flow are extended as follows:
init([call P (a, x)]lc

lr
) := lc

final([call P (a, x)]lclr) := {lr}

flow([call P (a, x)]lclr) := {(lc; ln), (lx; lr)}

init(proc [P (val x, res y)]ln is c [end]lx) := ln
final(proc [P (val x, res y)]ln is c [end]lx) := {lx}
flow(proc [P (val x, res y)]ln is c [end]lx) := {(ln, init(c))} ∪

{(l, lx) | l ∈ final(c)}

if proc [P (val x, res y)]ln is c [end]lx is in p.

Moreover the interprocural flow of a program p c is defined by
IF := {(lc, ln, lx, lr) | p c contains [call P (a, x)]lclr and

proc [P (val x, res y)]ln is c [end]lx} ⊆ L4

Semantics and Verification of Software Winter semester 2008/09 4

Naive Formulation

Example (Fibonacci numbers)

proc [Fib(val x, y, res z)]1 is

if [x<2]2 then

[z := y+1]3

else

[call Fib(x-1, y, z)]45;
[call Fib(x-2, z, z)]67;

[end]8;
[call Fib(5, 0, v)]910

“Valid” path:
[9, 1, 2, 3, 8, 10]

“Invalid” path:
[9, 1, 2, 4, 1, 2, 3, 8, 10]

Semantics and Verification of Software Winter semester 2008/09 5

Valid Paths I

Consider only paths with correct nesting of procedure calls and
returns

Will yield MVP solution (Meet over all Valid Paths)

Definition (Valid paths I)

Given a dataflow system S = (L, E, F, (D,⊑), ι, ϕ) and l1, l2 ∈ L, the
set of valid paths from l1 to l2 is generated by the nonterminal symbol
P [l1, l2] according to the following productions:

P [l1, l2] → l1 whenever l1 = l2
P [l1, l3] → l1, P [l2, l3] whenever (l1, l2) ∈ F
P [lc, l] → lc, P [ln, lx], P [lr, l] whenever (lc, ln, lx, lr) ∈ IF

Semantics and Verification of Software Winter semester 2008/09 6

The MVP Solution I

Definition (Valid paths II)

Let S = (L, E, F, (D,⊑), ι, ϕ) be a dataflow system. For every l ∈ L,
the set of valid paths up to l is given by

VPath(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E, lk = l,
[l1, . . . , lk] prefix of a valid path}.

For a path p = [l1, . . . , lk−1] ∈ VPath(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Winter semester 2008/09 7

The MVP Solution II

Definition (MVP solution)

Let S = (L, E, F, (D,⊑), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MVP solution for S is determined by

mvp(S) := (mvp(l1), . . . ,mvp(ln)) ∈ Dn

where, for every l ∈ L,
mvp(l) :=

⊔

{ϕp(ι) | p ∈ VPath(l)}.

Corollary

1 mvp(S) ⊑ mop(S)

2 The MVP solution is undecidable.

Proof.
1 since VPath(l) ⊆ Path(l) for every l ∈ L

2 by undecidability of MOP solution

Semantics and Verification of Software Winter semester 2008/09 8

Outline

1 Repetition: Interprocedural Dataflow Analysis

2 The Interprocedural Fixpoint Solution

3 The Equation System

Semantics and Verification of Software Winter semester 2008/09 9

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks D+ as dataflow version of runtime stack)

Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

call: computes new topmost entry from current and pushes it

return: removes topmost entry and combines it with underlying
entry

Semantics and Verification of Software Winter semester 2008/09 10

The Interprocedural Extension I

Definition 22.1 (Interprocedural extension (forward analysis))

Let S = (L, E, F, (D,⊑), ι, ϕ) be a dataflow system. The
interprocedural extension of S is given by

Ŝ := (L, E, F, (D̂, ⊑̂), ι̂, ϕ̂)
where

D̂ := D+

d1 . . . dn ⊑̂ d′1 . . . d′n iff di ⊑ d′i for every 1 ≤ i ≤ n

ι̂ := ι ∈ D+

for each l ∈ L \ {lc, ln, lx, lr | (lc, ln, lx, lr) ∈ IF},
ϕ̂l : D+ → D+ is given by ϕ̂l(dw) := ϕl(d)w

for each (lc, ln, lx, lr) ∈ IF , ϕ̂l : D+ → D+ is given by

ϕ̂lc(dw) := ϕlc(d)dw

ϕ̂ln(w) := w

ϕ̂lx(w) := w

ϕ̂lr(d
′dw) := ϕlr (d

′, d)w

Semantics and Verification of Software Winter semester 2008/09 11

The Interprocedural Extension II

Remark: the schema

1 ϕ̂lc(dw) := ϕlc(d)dw

2 ϕ̂ln(w) := w

3 ϕ̂lx(w) := w

4 ϕ̂lr(d
′dw) := ϕlr(d

′, d)w

can be generalized by allowing a modification of the topmost entry in
2. and 3. (local variables, ...)

Semantics and Verification of Software Winter semester 2008/09 12

The Interprocedural Extension III

Example 22.2 (Constant Propagation (cf. Lecture 19))

Ŝ := (L, E, F, (D̂, ⊑̂), ι̂, ϕ̂) is determined by

D := {δ | δ : Var c → Z ∪ {⊥,⊤}}

⊥ ⊑ z ⊑ ⊤

ι := δ⊤ ∈ D

for each l ∈ L \ {lc, ln, lx, lr | (lc, ln, lx, lr) ∈ IF},

ϕl(δ) :=

{

δ if Bl = skip or Bl ∈ BExp

δ[x 7→ AJaKδ] if Bl = (x := a)

whenever p c contains [call P (a, z)]lclr and

proc [P (val x, res y)]ln is c [end]lx ,

call: set input parameter and reset output parameter
ϕlc(δ) := δ[x 7→ AJaKδ, y 7→ ⊤]
return: propagate output parameter to caller by overwriting old
value
ϕlr(δ

′, δ) := δ[z 7→ δ′(y)]

Semantics and Verification of Software Winter semester 2008/09 13

Outline

1 Repetition: Interprocedural Dataflow Analysis

2 The Interprocedural Fixpoint Solution

3 The Equation System

Semantics and Verification of Software Winter semester 2008/09 14

The Equation System I

For an interprocedural dataflow system Ŝ := (L, E, F, (D̂, ⊑̂), ι̂, ϕ̂), the
intraprocedural equation system

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

is extended to a system with three kinds of equations
(for every l ∈ L):

for actual dataflow information: AIl ∈ D+

(extension of intraprocedural AI)

for transfer functions of single nodes: fl : D+ → D+

(extension of intraprocedural transfer functions)

for transfer functions of complete procedures: Fl : D+ → D+

(Fl(w) yields information at l if surrounding procedure is called
with information w =⇒ full procedure represented by Flx)

Semantics and Verification of Software Winter semester 2008/09 15

The Equation System II

Formal definition:

AIl =











ι if l ∈ E
⊔

{ϕ̂lc(AIlc) | (lc, ln, lx, lr) ∈ IF} if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(AIl′) | (l′, l) ∈ F} otherwise
(if l not an exit label)

fl(w) =

{

ϕ̂lr(Flx(ϕ̂lc(w))) if l = lc for some (lc, ln, lx, lr) ∈ IF
ϕ̂l(w) otherwise

Fl(w) =







w if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(Fl′(w)) | (l′, l) ∈ F} otherwise
(if l occurs in procedure)

As before: induces monotonic functional on lattice with ACC
=⇒ least fixpoint effectively computable

Semantics and Verification of Software Winter semester 2008/09 16

The Equation System III

Example 22.3 (Constant Propagation)

proc [P(val x, res y)]1 is

[y := 2*(x-1)]2;
[end]3;
[call P(2, z)]45;
[call P(z, z)]67;
[skip]8

Semantics and Verification of Software Winter semester 2008/09 17

	Repetition: Interprocedural Dataflow Analysis
	The Interprocedural Fixpoint Solution
	The Equation System

