
Semantics and Verification of Software

Lecture 23: Dataflow Analysis X
(Interprocedural Fixpoint Solution & Wrap-Up)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Repetition: Interprocedural Fixpoint Solution

2 The Example Revisited

3 Further Topics in Dataflow Analysis

Semantics and Verification of Software Winter semester 2008/09 2

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context-free grammar:

p ::= proc [P (val x, res y)]ln is c [end]lx;p | ε ∈ PDec

c ::= [skip]l | [x := a]l | c1;c2 | if [b]l then c1 else c2 |
while [b]l do c | [call P (a, x)]lc

lr
∈ Cmd

All labels and procedure names in program p c distinct

In proc [P (val x, res y)]ln is c [end]lx , ln (lx) refers to the entry
(exit) of P

In [call P (a, x)]lc
lr

, lc (lr) refers to the call of (return from) P

First parameter call-by-value, second call-by-result

Semantics and Verification of Software Winter semester 2008/09 3

Making Context Explicit

Goal: adapt fixpoint solution to avoid invalid paths

Approach: encode call history into data flow properties
(use stacks D+ as dataflow version of runtime stack)

Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

call: computes new topmost entry from current and pushes it

return: removes topmost entry and combines it with underlying
entry

Semantics and Verification of Software Winter semester 2008/09 4

The Interprocedural Extension I

Definition (Interprocedural extension (forward analysis))

Let S = (L, E, F, (D,⊑), ι, ϕ) be a dataflow system. The
interprocedural extension of S is given by

Ŝ := (L, E, F, (D̂, ⊑̂), ι̂, ϕ̂)
where

D̂ := D+

d1 . . . dn ⊑̂ d′1 . . . d′n iff di ⊑ d′
i
for every 1 ≤ i ≤ n

ι̂ := ι ∈ D+

for each l ∈ L \ {lc, ln, lx, lr | (lc, ln, lx, lr) ∈ IF},
ϕ̂l : D+ → D+ is given by ϕ̂l(dw) := ϕl(d)w

for each (lc, ln, lx, lr) ∈ IF , ϕ̂l : D+ → D+ is given by

ϕ̂lc(dw) := ϕlc(d)dw

ϕ̂ln(w) := w

ϕ̂lx(w) := w

ϕ̂lr(d
′dw) := ϕlr (d

′, d)w

Semantics and Verification of Software Winter semester 2008/09 5

The Interprocedural Extension II

Remark: the schema

1 ϕ̂lc(dw) := ϕlc(d)dw

2 ϕ̂ln(w) := w

3 ϕ̂lx(w) := w

4 ϕ̂lr(d
′dw) := ϕlr(d

′, d)w

can be generalized by allowing a modification of the topmost entry in
2. and 3. (local variables, ...)

Semantics and Verification of Software Winter semester 2008/09 6

The Interprocedural Extension III

Example (Constant Propagation (cf. Lecture 19))

Ŝ := (L, E, F, (D̂, ⊑̂), ι̂, ϕ̂) is determined by

D := {δ | δ : Var c → Z ∪ {⊥,⊤}}

⊥ ⊑ z ⊑ ⊤

ι := δ⊤ ∈ D

for each l ∈ L \ {lc, ln, lx, lr | (lc, ln, lx, lr) ∈ IF},

ϕl(δ) :=

{

δ if Bl = skip or Bl ∈ BExp

δ[x 7→ AJaKδ] if Bl = (x := a)

whenever p c contains [call P (a, z)]lc
lr

and

proc [P (val x, res y)]ln is c [end]lx ,

call: set input parameter and reset output parameter
ϕlc(δ) := δ[x 7→ AJaKδ, y 7→ ⊤]
return: propagate output parameter to caller by overwriting old
value
ϕlr(δ

′, δ) := δ[z 7→ δ′(y)]

Semantics and Verification of Software Winter semester 2008/09 7

The Equation System I

For an interprocedural dataflow system Ŝ := (L, E, F, (D̂, ⊑̂), ι̂, ϕ̂), the
intraprocedural equation system

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

is extended to a system with three kinds of equations
(for every l ∈ L):

for actual dataflow information: AIl ∈ D+

(extension of intraprocedural AI)

for transfer functions of single nodes: fl : D+ → D+

(extension of intraprocedural transfer functions)

for transfer functions of complete procedures: Fl : D+ → D+

(Fl(w) yields information at l if surrounding procedure is called
with information w =⇒ full procedure represented by Flx)

Semantics and Verification of Software Winter semester 2008/09 8

The Equation System II

Formal definition:

AIl =











ι if l ∈ E
⊔

{ϕ̂lc(AIlc) | (lc, ln, lx, lr) ∈ IF} if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(AIl′) | (l′, l) ∈ F} otherwise
(if l not an exit label)

fl(w) =

{

ϕ̂lr(Flx(ϕ̂lc(w))) if l = lc for some (lc, ln, lx, lr) ∈ IF
ϕ̂l(w) otherwise

Fl(w) =







w if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(Fl′(w)) | (l′, l) ∈ F} otherwise
(if l occurs in procedure)

As before: induces monotonic functional on lattice with ACC
=⇒ least fixpoint effectively computable

Semantics and Verification of Software Winter semester 2008/09 9

Outline

1 Repetition: Interprocedural Fixpoint Solution

2 The Example Revisited

3 Further Topics in Dataflow Analysis

Semantics and Verification of Software Winter semester 2008/09 10

The Equation System III

Example 23.1 (Constant Propagation)

Program:

proc [P(val x, res y)]1 is
[y := 2*(x-1)]2;

[end]3;
[call P(2, z)]4

5
;

[call P(z, z)]67;
[skip]8

Dataflow equations:

AI1 = ϕ̂4(AI4) ⊔ ϕ̂6(AI6)
AI2 = f1(AI1)
AI3 = f2(AI2)
AI4 = ι = ⊤⊤⊤
AI6 = f4(AI4)
AI8 = f6(AI6)

Node transfer functions:

f1(δw) = ϕ̂1(δw) = δw
f2(δw) = ϕ̂2(δw) = δ[y 7→ AJ2*(x-1)Kδ]w
f3(δw) = ϕ̂3(δw) = δw
f4(δw) = ϕ̂5(F3(ϕ̂4(δw)))
f6(δw) = ϕ̂7(F3(ϕ̂6(δw)))
f8(δw) = ϕ̂8(δw) = δw

ϕ̂4(δw) = δ[x 7→ 2, y 7→ ⊤]δw
ϕ̂5(δ

′δw) = δ[z 7→ δ′(y)]w
ϕ̂6(δw) = δ[x 7→ δ(z), y 7→ ⊤]δw

ϕ̂7(δ
′δw) = δ[z 7→ δ′(y)]w

Procedure transfer functions:

F1(δw) = δw
F2(δw) = f1(F1(δw)) = δw
F3(δw) = f2(F2(δw)) = δ[y 7→ AJ2*(x-1)Kδ]w

Fixpoint iteration:

on the board

Semantics and Verification of Software Winter semester 2008/09 11

The Fixpoint Iteration

For the fixpoint iteration it is important that the auxiliary functions
only operates on the topmost element of the stack (without proof):

Lemma 23.2

For every l ∈ L, d ∈ D, and w ∈ D∗,

fl(dd′w) = fl(d)w and Fl(dw) = Fl(d)w

It therefore suffices to consider stacks with at most two entries, and so
the fixpoint iteration ranges over “finitary objects”.

Semantics and Verification of Software Winter semester 2008/09 12

Outline

1 Repetition: Interprocedural Fixpoint Solution

2 The Example Revisited

3 Further Topics in Dataflow Analysis

Semantics and Verification of Software Winter semester 2008/09 13

Context-Sensitive Dataflow Analysis

Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns

Semantics and Verification of Software Winter semester 2008/09 14

Context-Sensitive Dataflow Analysis

Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns

But: do not distinguish between different procedure calls

AIl =











ι if l ∈ E
⊔

{ϕ̂lc(AIlc) | (lc, ln, lx, lr) ∈ IF} if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(AIl′) | (l′, l) ∈ F} otherwise

information about calling states combined for all call sites
procedure body only analyzed once using combined information
resulting information used at all return points

=⇒ “context-insensitive”

Semantics and Verification of Software Winter semester 2008/09 14

Context-Sensitive Dataflow Analysis

Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns

But: do not distinguish between different procedure calls

AIl =











ι if l ∈ E
⊔

{ϕ̂lc(AIlc) | (lc, ln, lx, lr) ∈ IF} if l = ln
for some (lc, ln, lx, lr) ∈ IF

⊔

{fl′(AIl′) | (l′, l) ∈ F} otherwise

information about calling states combined for all call sites
procedure body only analyzed once using combined information
resulting information used at all return points

=⇒ “context-insensitive”
Alternative: context-sensitive analysis

separate information for different call sites
implementation by “procedure cloning”
more precise
more costly

Semantics and Verification of Software Winter semester 2008/09 14

Shape Analysis I

So far: only static data structures (variables)

Semantics and Verification of Software Winter semester 2008/09 15

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps

Semantics and Verification of Software Winter semester 2008/09 15

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures

Semantics and Verification of Software Winter semester 2008/09 15

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address;
aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Semantics and Verification of Software Winter semester 2008/09 15

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address;
aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes A = sets of variables (interpretation: x ∈ A iff x

points to concrete node represented by A)
∅ represents all concrete nodes that are not directly reachable
transfer functions transform (sets of) shape graphs

Semantics and Verification of Software Winter semester 2008/09 15

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
sharing (different pointer variables referencing same address;
aliasing)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes A = sets of variables (interpretation: x ∈ A iff x

points to concrete node represented by A)
∅ represents all concrete nodes that are not directly reachable
transfer functions transform (sets of) shape graphs

see [Nielson/Nielson/Hankin 2005, Sct. 2.6]
Semantics and Verification of Software Winter semester 2008/09 15

Shape Analysis II

Example 23.3

{y} ∅ {z}
sel

sel1

sel2

⇓x := y.sel

{y} {x} {z}
sel

sel1

sel2

∅

{y} {x} {z}
sel sel2

sel1

∅

{y} {x} {z}
sel sel2

sel1

sel1

∅

{y} {x} {z}
sel

sel1

sel2
∅

{y} {x} {z}
sel

sel1

sel1

sel2

Semantics and Verification of Software Winter semester 2008/09 16

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Semantics and Verification of Software Winter semester 2008/09 17

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

Semantics and Verification of Software Winter semester 2008/09 17

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

To this aim: introduce small-step operational semantics operating
on program labels

〈l0, σ0〉 → . . . 〈ln, σn〉 → σn+1

where li ∈ L and σi : Var → Z

Semantics and Verification of Software Winter semester 2008/09 17

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

To this aim: introduce small-step operational semantics operating
on program labels

〈l0, σ0〉 → . . . 〈ln, σn〉 → σn+1

where li ∈ L and σi : Var → Z

Example: correctness of Constant Propagation

Let c ∈ Cmd with l0 = init(c), and let l ∈ Lc, x ∈ Var , and z ∈ Z

such that CPl(x) = z. Then for every σ0, σ ∈ Σ such that
〈l0, σ0〉 →

∗ 〈l, σ〉, σ(x) = z.

Semantics and Verification of Software Winter semester 2008/09 17

Correctness of Analyses

So far: semantics and dataflow analysis of programs independent

Of course both are (and should be) related!

To this aim: introduce small-step operational semantics operating
on program labels

〈l0, σ0〉 → . . . 〈ln, σn〉 → σn+1

where li ∈ L and σi : Var → Z

Example: correctness of Constant Propagation

Let c ∈ Cmd with l0 = init(c), and let l ∈ Lc, x ∈ Var , and z ∈ Z

such that CPl(x) = z. Then for every σ0, σ ∈ Σ such that
〈l0, σ0〉 →

∗ 〈l, σ〉, σ(x) = z.

see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Semantics and Verification of Software Winter semester 2008/09 17

	Repetition: Interprocedural Fixpoint Solution
	The Example Revisited
	Further Topics in Dataflow Analysis

