Semantics and Verification of Software

Lecture 23: Dataflow Analysis X
(Interprocedural Fixpoint Solution & Wrap-Up)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Repetition: Interprocedural Fixpoint Solution

Rm Semantics and Verification of Software ter semester 2008

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec P
Commands (statements) Cmd c

Context-free grammar:
p = proc [P(val z,res y)|'" is ¢ [end]’;p | ¢ € PDec
c = [skip)' | [z :=a]' | c1;co | if [b]' then ¢; else c3 |
while [b]' do c| [call P(a,x)]; € Cmd

All labels and procedure names in program p ¢ distinct

In proc [P(val z,res y)|'" is c [end]s, I, (I;) refers to the entry
(exit) of P
In [call P(a,x)]ﬁ:, l. (1) refers to the call of (return from) P

First parameter call-by-value, second call-by-result

©

©

Rm Semantics and Verification of Software Winter semester 2008,/09

Making Context Explicit

o Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

@ Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

@ call: computes new topmost entry from current and pushes it

@ return: removes topmost entry and combines it with underlying
entry

Rm Semantics and Verification of Software Winter semester 2008,/09

The Interprocedural Extension 1

Definition (Interprocedural extension (forward analysis))

Let S = (L,E,F,(D,C),t,p) be a dataflow system. The
interprocedural extension of S is given by
S:=(L,E,F,(D,C),i,$)

where
o D:=Dt
ody...d, Cdy...d iff d; C d, forevery 1<i<n
@ l:=1€ Dt

o foreach I € L\ {l¢,ln, Ly, 1y | (leyln,y 1z, 1) € IFY,
@y DT — D7 is given by ¢;(dw) = ¢y (d)w
o for each (I, lp,l;, 1) € IF, ¢ : D™ — D7 is given by

o ¢ (dw) = ¢y (d)dw
° <Pl (w) ==w

o ¢ (w) :=w

o P, (d'dw) == ¢, (d',d)

m' Semantics and Verification of Software Winter semester 2008,/09

The Interprocedural Extension 11

Remark: the schema

Q @i (dw) = ¢y (d)dw

Q ¢, (w) =w

Q 4, (w):=w

Q ¢, (ddw) = ¢ (d,d)w
can be generalized by allowing a modification of the topmost entry in
2. and 3. (local variables, ...)

Rm Semantics and Verification of Software Winter semester 2008,/09 6

The Interprocedural Extension III

Example (Constant Propagation (cf. Lecture 19))
S .= (L, E, F, (15, £),7,¢) is determined by

e D:={0|0:Varc - ZU{L,T}}

o LCzCT

@ L:=0T7€D
for each i € L\ {lc,ln, 1z, 0 | (e, ln, 1z, 1) € IF},

8) = 0 if B! = skip or B! € BExp
PIO) = Sz — A[a]d] if B! = (z :=a)

whenever p ¢ contains [call P(a, z)]ij and

©

©

proc [P(val z,res y)|'" is c [end]',
o call: set input parameter and reset output parameter
1. (0) := d[z — Ala]d,y — T]
e return: propagate output parameter to caller by overwriting old
value

@1,.(0',6) := 0]z — &' (y)]

m' Semantics and Verification of Software Winter semester 2008,/09

The Equation System I

For an interprocedural dataflow system S := (L,E,F, (15, £),i,¢), the
intraprocedural equation system

Al = 2 ifle B
P er (Aly) | (1) € F} - otherwise

is extended to a system with three kinds of equations
(for every | € L):
o for actual dataflow information: Al; € DT
(extension of intraprocedural Al)
o for transfer functions of single nodes: f; : D™ — DT
(extension of intraprocedural transfer functions)
o for transfer functions of complete procedures: Fj : D¥ — DT
(Fj(w) yields information at [if surrounding procedure is called
with information w == full procedure represented by Fj,)

Rm Semantics and Verification of Software Winter semester 2008,/09

The Equation System II

Formal definition:

L ifle B
Al = U2 (AL) [(e o Loy by) € TF} i L= 1y
for some (l¢,lp, 1z, 1) € I[F
LI{fv(Aly) | (I')1) € F'} otherwise
(if [not an exit label)

fi(w) = &, (Fp, (@1, (w))) if I =1, for some (¢, ln, 1z, 1) € IF
! T @i(w) otherwise
w ifl=1,
Fi(w) = for some (l¢,ly, 1y, 1) € IF

LS (Fr(w)) | (I',1) € F'} otherwise
(if I occurs in procedure)

As before: induces monotonic functional on lattice with ACC
= least fixpoint effectively computable

m' Semantics and Verification of Software Winter semester 2008,/09

© The Example Revisited

Rm Semantics and Verification of Software ter semester 2008

The Equation System III

Example 23.1 (Constant Propagation)

Node transfer functions:
. f1(0w) = 1 (dw) = dw
Program:) f2(0w) = Ga(dw) = dly > A2x (x-1)]6w
proc [P(val x, r;as] is f3(0w) = Ps(dw) = dw
[y K 2+ (x-DJ%; Ja(ow) = @5(F3(¢4(0w)))
[end]”; fo(0w) = &7(F3(Pe(dw)))
[call P(2, z)]%; fs(0w) = Ps(dw) = dw
[Ca}l SP(Z’ 2)]7; Pa(dw) = 8z — 2,y — T]ow
) @5 (0'0w) = 0z — & (y)]w
Dataflow equations:) ¢6$5w) = §lz — 6/(2), y = T]ow
Aly = @4(Aly) L G (Alg) ¢7(6'0w) = 6z — &' (y)]w
Aly = f1(Aly) Procedure transfer functions:
Alg = fa(Alz) Fy(6w) = dw
Aly =¢=TTT Fy(bw) = f1(Fy(6w)) = dw
Als = fa(Als) F3(6w) = fo(Fo(w)) = o[y — A[2% (x=1)]8]w
Alg = fe(Alg) s e e .
Fixpoint iteration:
on the board

m' Semantics and Verification of Software Winter semester 2008,/09 11

The Fixpoint Iteration

For the fixpoint iteration it is important that the auxiliary functions
only operates on the topmost element of the stack (without proof):

For everyl € L, d € D, and w € D*,

fildd'w) = fi(d)w and Fy(dw) = Fy(d)w

It therefore suffices to consider stacks with at most two entries, and so
the fixpoint iteration ranges over “finitary objects”.

m' Semantics and Verification of Software Winter semester 2008,/09 12

© Further Topics in Dataflow Analysis

Rm Semantics and Verification of Software ter semester 2008

Context-Sensitive Dataflow Analysis

@ Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns

Rm Semantics and Verification of Software Winter semester 2008,/09 14

Context-Sensitive Dataflow Analysis

@ Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns

@ But: do not distinguish between different procedure calls

L ifle k
L@ (AL | (leyln,y Ug, 1) € IF} if 1 =1,

for some (I, 1y, 1;, 1) € IF
LI{fu(Aly) | (I',1) € F} otherwise

Al; =

o information about calling states combined for all call sites
e procedure body only analyzed once using combined information
o resulting information used at all return points

= “context-insensitive”

Rm Semantics and Verification of Software Winter semester 2008,/09 14

Context-Sensitive Dataflow Analysis

@ Observation: MVP and fixpoint solution maintain proper
relationship between procedure calls and returns

@ But: do not distinguish between different procedure calls

L ifle B
Al = L@ (Al) | (les ln, ley 1) € TF} i T =1,
1= for some (I, 1y, 1,1,) € IF
LI{fu(Aly) | (I',1) € F} otherwise

o information about calling states combined for all call sites
e procedure body only analyzed once using combined information
o resulting information used at all return points
—> ‘“context-insensitive”
@ Alternative: context-sensitive analysis
o separate information for different call sites
implementation by “procedure cloning”
more precise
more costly

¢ ¢ ¢

Rm Semantics and Verification of Software Winter semester 2008,/09

Shape Analysis I

@ So far: only static data structures (variables)

Rm Semantics and fication of Software Winter semester 2008

Shape Analysis I

@ So far: only static data structures (variables)
@ Now: pointer (variables) and dynamic memory allocation using
heaps

Rm Semantics and fication of Software Winter semester 2008

Shape Analysis I

@ So far: only static data structures (variables)

@ Now: pointer (variables) and dynamic memory allocation using
heaps

o Goal: shape analysis = approximative analysis of heap data
structures

Rm Semantics and Verification of Software Winter semester 2008,/09 15

Shape Analysis I

@ So far: only static data structures (variables)
@ Now: pointer (variables) and dynamic memory allocation using
heaps
o Goal: shape analysis = approximative analysis of heap data
structures
o Interesting information:
¢ data types (to avoid type errors, such as dereferencing nil)
o sharing (different pointer variables referencing same address;
aliasing)
o reachability of nodes (garbage collection)
¢ disjointness of heap regions (parallelizability)
o shapes (lists, trees, absence of cycles, ...)

Rm Semantics and Verification of Software Winter semester 2008,/09

Shape Analysis I

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
o Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:
¢ data types (to avoid type errors, such as dereferencing nil)
o sharing (different pointer variables referencing same address;
aliasing)
o reachability of nodes (garbage collection)
¢ disjointness of heap regions (parallelizability)
o shapes (lists, trees, absence of cycles, ...)
Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs
o abstract nodes A = sets of variables (interpretation: = € A iff x
points to concrete node represented by A)
o () represents all concrete nodes that are not directly reachable
o transfer functions transform (sets of) shape graphs

¢ ©

©

Rm Semantics and Verification of Software Winter semester 2008,/09

Shape Analysis I

¢ ©

©

]

see [Nielson/Nielson/Hankin 2005. Sct. 2.6
RWNTH

So far: only static data structures (variables)
Now: pointer (variables) and dynamic memory allocation using
heaps
Goal: shape analysis = approximative analysis of heap data
structures
Interesting information:
¢ data types (to avoid type errors, such as dereferencing nil)
o sharing (different pointer variables referencing same address;
aliasing)
o reachability of nodes (garbage collection)
¢ disjointness of heap regions (parallelizability)
o shapes (lists, trees, absence of cycles, ...)
Representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs
o abstract nodes A = sets of variables (interpretation: = € A iff x
points to concrete node represented by A)
o () represents all concrete nodes that are not directly reachable
o transfer functions transform (sets of) shape graphs

Semantics and Verification of Software Winter semester 2008,/09

Shape Analysis I1

(&
W) 612

—|{z}

lz = y.sel (jdl
selq sely
[22T P2 3] [0]2 [0 2 3] [0]2 [0 []

sela

Tsell

Gy

selo
Tsel 1

sel

| v} | == (o} |

sel

[z} [} |25 (e

1]

Semantics and Verification of Software

emester 2008,/09

16

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent

Rm Semantics and Verification of Software Winter semester 2008,/09 17

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent
@ Of course both are (and should be) related!

Rm Semantics and Verification of Software Winter semester 2008,/09 17

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent
@ Of course both are (and should be) related!

@ To this aim: introduce small-step operational semantics operating
on program labels

<l(),0‘0> — ... <ln,0'n> — Op+1

where [; € L and o; : Var — Z

Rm Semantics and Verification of Software Winter semester 2008,/09 17

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent
@ Of course both are (and should be) related!

@ To this aim: introduce small-step operational semantics operating
on program labels

<l(),0‘0> — ... (ln,O'n> — Op+1

where [; € L and o; : Var — Z
o Example: correctness of Constant Propagation
Let ¢ € Cmd with ly = init(c), and let | € L., x € Var, and z € Z

such that CP;(x) = z. Then for every op,0 € ¥ such that
<l0?0-0> —* <l?0->? 0'(33) =z

Rm Semantics and Verification of Software Winter semester 2008,/09 17

Correctness of Analyses

@ So far: semantics and dataflow analysis of programs independent
@ Of course both are (and should be) related!

@ To this aim: introduce small-step operational semantics operating
on program labels

<l(),0‘0> — ... (ln,O'n> — Op+1

where [; € L and o; : Var — Z
o Example: correctness of Constant Propagation
Let ¢ € Cmd with ly = init(c), and let | € L., x € Var, and z € Z
such that CP;(x) = z. Then for every op,0 € ¥ such that
<l0’0'0> —* <l?0->? 0-(33) =z
@ see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Rm Semantics and Verification of Software Winter semester 2008,/09 17

	Repetition: Interprocedural Fixpoint Solution
	The Example Revisited
	Further Topics in Dataflow Analysis

