

Semantics and Verification of Software

Lecture 23: Dataflow Analysis X (Interprocedural Fixpoint Solution & Wrap-Up)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw08/>

Winter semester 2008/09

- 1 Repetition: Interprocedural Fixpoint Solution
- 2 The Example Revisited
- 3 Further Topics in Dataflow Analysis

Extending the Syntax

Syntactic categories:

Category	Domain	Meta variable
Procedure identifiers	$PVar = \{P, Q, \dots\}$	P
Procedure declarations	$PDec$	p
Commands (statements)	Cmd	c

Context-free grammar:

$$p ::= \text{proc } [P(\text{val } x, \text{res } y)]^{l_n} \text{ is } c [\text{end}]^{l_x}; p \mid \varepsilon \in PDec$$
$$c ::= [\text{skip}]^l \mid [x := a]^l \mid c_1; c_2 \mid \text{if } [b]^l \text{ then } c_1 \text{ else } c_2 \mid$$
$$\text{while } [b]^l \text{ do } c \mid [\text{call } P(a, x)]_{l_r}^{l_c} \in Cmd$$

- All labels and procedure names in $program$ pc distinct
- In $\text{proc } [P(\text{val } x, \text{res } y)]^{l_n} \text{ is } c [\text{end}]^{l_x}$, l_n (l_x) refers to the entry (exit) of P
- In $[\text{call } P(a, x)]_{l_r}^{l_c}$, l_c (l_r) refers to the call of (return from) P
- First parameter call-by-value , second call-by-result

- **Goal:** adapt fixpoint solution to **avoid invalid paths**
- **Approach:** encode call history into data flow properties (use **stacks** D^+ as dataflow version of runtime stack)
- Non-procedural constructs (**skip**, assignments, tests): operate only on **topmost element**
- **call:** computes **new topmost entry** from current and pushes it
- **return:** **removes topmost entry** and combines it with underlying entry

The Interprocedural Extension I

Definition (Interprocedural extension (forward analysis))

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. The **interprocedural extension** of S is given by

$$\hat{S} := (L, E, F, (\hat{D}, \hat{\sqsubseteq}), \hat{\iota}, \hat{\varphi})$$

where

- $\hat{D} := D^+$
- $d_1 \dots d_n \hat{\sqsubseteq} d'_1 \dots d'_n$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$
- $\hat{\iota} := \iota \in D^+$
- for each $l \in L \setminus \{l_c, l_n, l_x, l_r \mid (l_c, l_n, l_x, l_r) \in IF\}$,
 $\hat{\varphi}_l : D^+ \rightarrow D^+$ is given by $\hat{\varphi}_l(dw) := \varphi_l(d)w$
- for each $(l_c, l_n, l_x, l_r) \in IF$, $\hat{\varphi}_l : D^+ \rightarrow D^+$ is given by
 - $\hat{\varphi}_{l_c}(dw) := \varphi_{l_c}(d)dw$
 - $\hat{\varphi}_{l_n}(w) := w$
 - $\hat{\varphi}_{l_x}(w) := w$
 - $\hat{\varphi}_{l_r}(d'dw) := \varphi_{l_r}(d', d)w$

Remark: the schema

- ① $\hat{\varphi}_{l_c}(dw) := \varphi_{l_c}(d)dw$
- ② $\hat{\varphi}_{l_n}(w) := w$
- ③ $\hat{\varphi}_{l_x}(w) := w$
- ④ $\hat{\varphi}_{l_r}(d'dw) := \varphi_{l_r}(d', d)w$

can be generalized by allowing a modification of the topmost entry in
2. and 3. (local variables, ...)

Example (Constant Propagation (cf. Lecture 19))

$\hat{S} := (L, E, F, (\hat{D}, \hat{\sqsubseteq}), \hat{\iota}, \hat{\varphi})$ is determined by

- $D := \{\delta \mid \delta : Var_c \rightarrow \mathbb{Z} \cup \{\perp, \top\}\}$
- $\perp \sqsubseteq z \sqsubseteq \top$
- $\iota := \delta_{\top} \in D$
- for each $l \in L \setminus \{l_c, l_n, l_x, l_r \mid (l_c, l_n, l_x, l_r) \in IF\}$,
$$\varphi_l(\delta) := \begin{cases} \delta & \text{if } B^l = \text{skip or } B^l \in BExp \\ \delta[x \mapsto \mathfrak{A}[a]\delta] & \text{if } B^l = (x := a) \end{cases}$$
- whenever pc contains $[\text{call } P(a, z)]_{l_r}^{l_c}$ and
 $\text{proc } [P(\text{val } x, \text{res } y)]^{l_n} \text{ is } c \text{ [end]}^{l_x}$,
 - **call:** set input parameter and reset output parameter
 $\varphi_{l_c}(\delta) := \delta[x \mapsto \mathfrak{A}[a]\delta, y \mapsto \top]$
 - **return:** propagate output parameter to caller by overwriting old value
 $\varphi_{l_r}(\delta', \delta) := \delta[z \mapsto \delta'(y)]$

The Equation System I

For an interprocedural dataflow system $\hat{S} := (L, E, F, (\hat{D}, \hat{\sqsubseteq}), \hat{\iota}, \hat{\varphi})$, the intraprocedural equation system

$$\text{AI}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\text{AI}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

is extended to a system with three kinds of equations
(for every $l \in L$):

- for actual **dataflow information**: $\text{AI}_l \in D^+$
(extension of intraprocedural AI)
- for **transfer functions of single nodes**: $f_l : D^+ \rightarrow D^+$
(extension of intraprocedural transfer functions)
- for **transfer functions of complete procedures**: $F_l : D^+ \rightarrow D^+$
($F_l(w)$ yields information at l if surrounding procedure is called
with information $w \implies$ full procedure represented by F_{l_x})

The Equation System II

Formal definition:

$$\text{Al}_l = \begin{cases} \uplus \{\hat{\varphi}_{l_c}(\text{Al}_{l_c}) \mid (l_c, l_n, l_x, l_r) \in IF\} & \text{if } l \in E \\ \uplus \{\text{fl}'(\text{Al}_{l'}) \mid (l', l) \in F\} & \text{if } l = l_n \\ & \text{for some } (l_c, l_n, l_x, l_r) \in IF \\ \text{(if } l \text{ not an exit label)} & \text{otherwise} \end{cases}$$

$$\text{fl}(w) = \begin{cases} \hat{\varphi}_{l_r}(\text{Fl}_x(\hat{\varphi}_{l_c}(w))) & \text{if } l = l_c \text{ for some } (l_c, l_n, l_x, l_r) \in IF \\ \hat{\varphi}_l(w) & \text{otherwise} \end{cases}$$

$$\text{Fl}_l(w) = \begin{cases} w & \text{if } l = l_n \\ \uplus \{\text{fl}'(\text{Fl}'(w)) \mid (l', l) \in F\} & \text{for some } (l_c, l_n, l_x, l_r) \in IF \\ \text{(if } l \text{ occurs in procedure)} & \text{otherwise} \end{cases}$$

As before: induces monotonic functional on lattice with ACC
⇒ least fixpoint effectively computable

1 Repetition: Interprocedural Fixpoint Solution

2 The Example Revisited

3 Further Topics in Dataflow Analysis

The Equation System III

Example 23.1 (Constant Propagation)

Node transfer functions:

Program:

```
proc [P(val x, res y)]1 is
  [y := 2*(x-1)]2;
[end]3;
[call P(2, z)]4;
[call P(z, z)]6;
[skip]8
```

Dataflow equations:

$$\begin{aligned}AI_1 &= \hat{\varphi}_4(AI_4) \sqcup \hat{\varphi}_6(AI_6) \\AI_2 &= f_1(AI_1) \\AI_3 &= f_2(AI_2) \\AI_4 &= \iota = \top \top \top \\AI_6 &= f_4(AI_4) \\AI_8 &= f_6(AI_6)\end{aligned}$$

$$\begin{aligned}f_1(\delta w) &= \hat{\varphi}_1(\delta w) = \delta w \\f_2(\delta w) &= \hat{\varphi}_2(\delta w) = \delta[y \mapsto \mathfrak{A}[2*(x-1)]\delta]w \\f_3(\delta w) &= \hat{\varphi}_3(\delta w) = \delta w \\f_4(\delta w) &= \hat{\varphi}_5(F_3(\hat{\varphi}_4(\delta w))) \\f_6(\delta w) &= \hat{\varphi}_7(F_3(\hat{\varphi}_6(\delta w))) \\f_8(\delta w) &= \hat{\varphi}_8(\delta w) = \delta w \\ \hat{\varphi}_4(\delta w) &= \delta[x \mapsto 2, y \mapsto \top]\delta w \\ \hat{\varphi}_5(\delta' \delta w) &= \delta[z \mapsto \delta'(y)]w \\ \hat{\varphi}_6(\delta w) &= \delta[x \mapsto \delta(z), y \mapsto \top]\delta w \\ \hat{\varphi}_7(\delta' \delta w) &= \delta[z \mapsto \delta'(y)]w\end{aligned}$$

Procedure transfer functions:

$$\begin{aligned}F_1(\delta w) &= \delta w \\F_2(\delta w) &= f_1(F_1(\delta w)) = \delta w \\F_3(\delta w) &= f_2(F_2(\delta w)) = \delta[y \mapsto \mathfrak{A}[2*(x-1)]\delta]w\end{aligned}$$

Fixpoint iteration:

on the board

For the fixpoint iteration it is important that the auxiliary functions only operates on the topmost element of the stack (without proof):

Lemma 23.2

For every $l \in L$, $d \in D$, and $w \in D^$,*

$$f_l(dd'w) = f_l(d)w \text{ and } F_l(dw) = F_l(d)w$$

It therefore suffices to consider stacks with at most two entries, and so the fixpoint iteration ranges over “finitary objects”.

- 1 Repetition: Interprocedural Fixpoint Solution
- 2 The Example Revisited
- 3 Further Topics in Dataflow Analysis

- **Observation:** MVP and fixpoint solution maintain proper relationship between procedure calls and returns

- **Observation:** MVP and fixpoint solution maintain **proper relationship between procedure calls and returns**
- **But:** do not distinguish between different procedure calls

$$\text{AI}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\hat{\varphi}_{l_c}(\text{AI}_{l_c}) \mid (l_c, l_n, l_x, l_r) \in IF\} & \text{if } l = l_n \\ \bigsqcup \{f_{l'}(\text{AI}_{l'}) \mid (l', l) \in F\} & \text{for some } (l_c, l_n, l_x, l_r) \in IF \\ & \text{otherwise} \end{cases}$$

- information about calling states **combined for all call sites**
- procedure body only analyzed once using combined information
- resulting information used at all return points

⇒ “context-insensitive”

- **Observation:** MVP and fixpoint solution maintain proper relationship between procedure calls and returns
- **But:** do not distinguish between different procedure calls

$$\text{AI}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\hat{\varphi}_{l_c}(\text{AI}_{l_c}) \mid (l_c, l_n, l_x, l_r) \in IF\} & \text{if } l = l_n \\ \bigsqcup \{f_{l'}(\text{AI}_{l'}) \mid (l', l) \in F\} & \text{for some } (l_c, l_n, l_x, l_r) \in IF \\ & \text{otherwise} \end{cases}$$

- information about calling states combined for all call sites
- procedure body only analyzed once using combined information
- resulting information used at all return points

⇒ “context-insensitive”

- **Alternative:** context-sensitive analysis
 - separate information for different call sites
 - implementation by “procedure cloning”
 - more precise
 - more costly

- **So far:** only static data structures (variables)

- **So far:** only static data structures (variables)
- **Now:** pointer (variables) and dynamic memory allocation using heaps

- **So far:** only static data structures (variables)
- **Now:** pointer (variables) and dynamic memory allocation using heaps
- **Goal:** shape analysis = approximative analysis of heap data structures

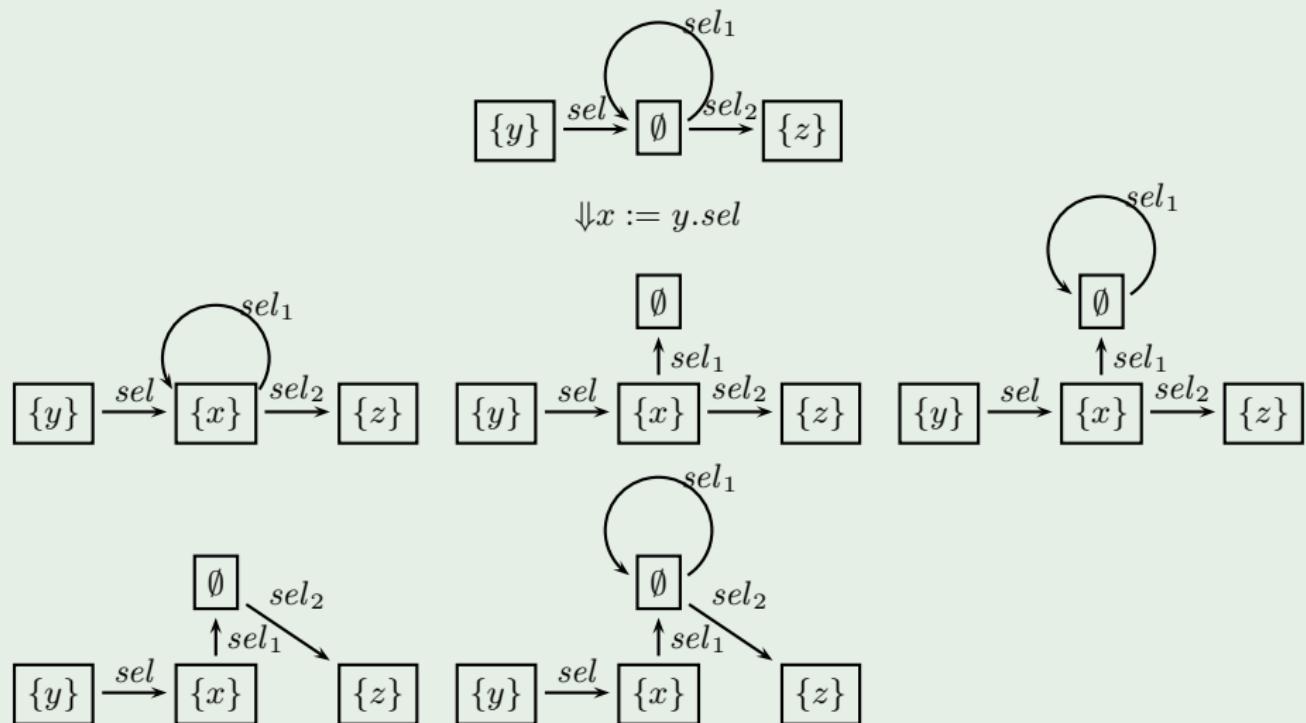
- **So far:** only static data structures (variables)
- **Now:** pointer (variables) and dynamic memory allocation using heaps
- **Goal:** shape analysis = approximative analysis of heap data structures
- Interesting information:
 - **data types** (to avoid type errors, such as dereferencing `nil`)
 - **sharing** (different pointer variables referencing same address; aliasing)
 - **reachability** of nodes (garbage collection)
 - **disjointness** of heap regions (parallelizability)
 - **shapes** (lists, trees, absence of cycles, ...)

- **So far:** only static data structures (variables)
- **Now:** pointer (variables) and dynamic memory allocation using heaps
- **Goal:** shape analysis = approximative analysis of heap data structures
- Interesting information:
 - **data types** (to avoid type errors, such as dereferencing `nil`)
 - **sharing** (different pointer variables referencing same address; aliasing)
 - **reachability** of nodes (garbage collection)
 - **disjointness** of heap regions (parallelizability)
 - **shapes** (lists, trees, absence of cycles, ...)
- Representation of (infinitely many) concrete heap states by (finitely many) abstract **shape graphs**
 - **abstract nodes** A = sets of variables (interpretation: $x \in A$ iff x points to concrete node represented by A)
 - \emptyset represents all concrete nodes that are not directly reachable
 - **transfer functions** transform (sets of) shape graphs

- **So far:** only static data structures (variables)
- **Now:** pointer (variables) and dynamic memory allocation using heaps
- **Goal:** shape analysis = approximative analysis of heap data structures
- Interesting information:
 - **data types** (to avoid type errors, such as dereferencing `nil`)
 - **sharing** (different pointer variables referencing same address; aliasing)
 - **reachability** of nodes (garbage collection)
 - **disjointness** of heap regions (parallelizability)
 - **shapes** (lists, trees, absence of cycles, ...)
- Representation of (infinitely many) concrete heap states by (finitely many) abstract **shape graphs**
 - **abstract nodes** A = sets of variables (interpretation: $x \in A$ iff x points to concrete node represented by A)
 - \emptyset represents all concrete nodes that are not directly reachable
 - **transfer functions** transform (sets of) shape graphs
- see [Nielson/Nielson/Hankin 2005, Sct. 2.6]

Shape Analysis II

Example 23.3



- So far: semantics and dataflow analysis of programs independent

- **So far:** semantics and dataflow analysis of programs independent
- Of course both are (and should be) related!

- **So far:** semantics and dataflow analysis of programs independent
- Of course both are (and should be) related!
- To this aim: introduce **small-step operational semantics** operating on program labels

$$\langle l_0, \sigma_0 \rangle \rightarrow \dots \langle l_n, \sigma_n \rangle \rightarrow \sigma_{n+1}$$

where $l_i \in L$ and $\sigma_i : Var \rightarrow \mathbb{Z}$

- **So far:** semantics and dataflow analysis of programs independent
- Of course both are (and should be) related!
- To this aim: introduce **small-step operational semantics** operating on program labels

$$\langle l_0, \sigma_0 \rangle \rightarrow \dots \langle l_n, \sigma_n \rangle \rightarrow \sigma_{n+1}$$

where $l_i \in L$ and $\sigma_i : Var \rightarrow \mathbb{Z}$

- **Example:** correctness of Constant Propagation

Let $c \in Cmd$ with $l_0 = \text{init}(c)$, and let $l \in L_c$, $x \in Var$, and $z \in \mathbb{Z}$ such that $\text{CP}_l(x) = z$. Then for every $\sigma_0, \sigma \in \Sigma$ such that $\langle l_0, \sigma_0 \rangle \rightarrow^* \langle l, \sigma \rangle$, $\sigma(x) = z$.

- **So far:** semantics and dataflow analysis of programs independent
- Of course both are (and should be) related!
- To this aim: introduce small-step operational semantics operating on program labels

$$\langle l_0, \sigma_0 \rangle \rightarrow \dots \langle l_n, \sigma_n \rangle \rightarrow \sigma_{n+1}$$

where $l_i \in L$ and $\sigma_i : Var \rightarrow \mathbb{Z}$

- **Example:** correctness of Constant Propagation

Let $c \in Cmd$ with $l_0 = \text{init}(c)$, and let $l \in L_c$, $x \in Var$, and $z \in \mathbb{Z}$ such that $\text{CP}_l(x) = z$. Then for every $\sigma_0, \sigma \in \Sigma$ such that $\langle l_0, \sigma_0 \rangle \rightarrow^* \langle l, \sigma \rangle$, $\sigma(x) = z$.

- see [Nielson/Nielson/Hankin 2005, Sct. 2.2]