Semantics and Verification of Software

Lecture 24: Provably Correct Implementation I
(Abstract Machine & Compiler)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Introduction

Rm mantics and Verification of Software nter semes

Compiler Correctness

. compiler .
programming language =~ —— machine code
semantics | | (simple) semantics
7 .
meaning = meaning

Rm Semantics and fication of Software Winter semester 2008

Compiler Correctness

. compiler .
programming language =~ —— machine code
semantics | | (simple) semantics
meaning Z meaning
To do:

@ Definition of abstract machine
@ Definition (operational) semantics of machine instructions
@ Definition of translation WHILE — machine code (“compiler”)
@ Proof: semantics of generated machine code = semantics of

original source code

Rm Semantics and fication of Software Winter semester 2008

© The Abstract Machine

Rm Semantics and Verification of Software ter semester 2008

The Abstract Machine
Definition 24.1

The abstract machine (AM) is given by
@ configurations of the form (d,e,o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
9 e € Stk := (ZUB)* is the evaluation stack
o 0 € ¥ :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x X)

Semantics and Verification of Software Winter semester 2008,/09

The Abstract Machine
Definition 24.1

The abstract machine (AM) is given by
@ configurations of the form (d,e,o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
9 e € Stk := (ZUB)* is the evaluation stack
o 0 € ¥ :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x X)

e final configurations of the form (e, e, o)

Semantics and Verification of Software Winter semester 2008,/09

The Abstract Machine
Definition 24.1

The abstract machine (AM) is given by
@ configurations of the form (d,e,o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
9 e € Stk := (ZUB)* is the evaluation stack
o 0 € ¥ :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x X)
o final configurations of the form (e, e, o)
@ code sequences and instructions:
du=cl|i:d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD () | STORE (z) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z € Z and x € Var)

Semantics and Verification of Software Winter semester 2008,/09

Semantics of AM-Code

Definition 24.2
The transition relation > C Cnf x Cnf is given by

(PUSH(2) : d,e,o
(ADD : d, 21 : 22 : €,0
(MULT : d, 21 : 22 : €,0
(SUB:d,21:22:e,0
(TRUE : d, e, 0

(FALSE : d, e, 0
(EQ:d,z1:20:€,0
(GT:d,z1: 20 : €,0
(AND : d, 1 : t2 : e,0
(OR : d,t1 : to : e,0
(NEG: d,t: e,0
(LOAD(z) : d,e,0
(STORE(x) : d,z : e,0
(NOOP : d, e, 0
<BR-ANCH(dtrue’dfalse) : d7 t: €, 0
<LO0P(d1 ,dg) o d, e, o

9 Z1—|—Z2)Z€,O'>

o~~~ e~~~ ~—~——~—~—~—~—

m Semantics and Verification of Software Winter semester 2008,/09 6

Alternative Choices

Remark: more traditional machine architectures
@ Variables referenced by address (and not by name)

o configurations (d, e, m) with memory m € Z*
o LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)

Rm Semantics and Verification of Software Winter semester 2008,/09

Alternative Choices

Remark: more traditional machine architectures
@ Variables referenced by address (and not by name)
o configurations (d, e, m) with memory m € Z*
o LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)

@ BRANCH and LOOP instruction replaced by code addresses (labels)
and jumping instructions
o configurations (pc, d, e, m) with program counter pc € N
@ BRANCH and LOOP implemented by control flow, using JUMP (/) and
JUMPFALSE(]) (I € N)

Rm Semantics and Verification of Software Winter semester 2008,/09

Alternative Choices

Remark: more traditional machine architectures
@ Variables referenced by address (and not by name)
o configurations (d, e, m) with memory m € Z*
o LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)

@ BRANCH and LOOP instruction replaced by code addresses (labels)
and jumping instructions
o configurations (pc, d, e, m) with program counter pc € N
@ BRANCH and LOOP implemented by control flow, using JUMP (/) and
JUMPFALSE(]) (I € N)

@ Registers for storing intermediate values (in place of evaluation
stack e)

Rm Semantics and Verification of Software Winter semester 2008,/09

Terminating and Looping Computations
Definition 24.3

o A terminating computation is a finite configuration sequence of
the form ~y, 71, ..., 7% where
® Yo = <d,€, O'>
@ 7;_1 D> for each i € k (k € N)
o there is no y such that ~; >~

Semantics and Verification of Software Winter semester 2008,/09

Terminating and Looping Computations
Definition 24.3

o A terminating computation is a finite configuration sequence of
the form ~p,~v1, ..., where
® Yo = <d,€, O'>
@ 7;_1 D> for each i € k (k € N)
o there is no y such that ~; >~
@ A looping computation is an infinite configuration sequence of the
form o, 71,72, ... where
® Yo = <d,€, O'>
@ v D> Y41 for each i € N
o there is no v such that v > v

Semantics and Verification of Software Winter semester 2008,/09

Terminating and Looping Computations
Definition 24.3

o A terminating computation is a finite configuration sequence of
the form ~p,~v1, ..., where
® Yo = <d,€, O'>
@ 7;_1 D> for each i € k (k € N)
o there is no y such that ~; >~
@ A looping computation is an infinite configuration sequence of the
form o, 71,72, ... where
® Yo = <d,€, O'>
@ v D> Y41 for each i € N
o there is no v such that v > v

Note: a terminating computation may end in a final configuration
({e,e,0)) or in a stuck configuration (e.g., (ADD, 1,0))

Semantics and Verification of Software Winter semester 2008,/09

A Terminating Computation

Example 24.4

For d := PUSH(1) :LOAD(x) : ADD: STORE (x) and o(x) = 3:

(PUSH(1) : LOAD (x) : ADD: STORE (x), £, o)

m' Semantics and Verification of Software Winter semester 2008,/09 9

A Terminating Computation

Example 24.4

For d := PUSH(1) :LOAD(x) : ADD: STORE (x) and o(x) = 3:

(PUSH(1) : LOAD (x) : ADD: STORE (x), £, o)
> (LOAD(x) :ADD:STORE(x),1,0)

m' Semantics and Verification of Software Winter semester 2008,/09 9

A Terminating Computation

Example 24.4

For d := PUSH(1) :LOAD(x) : ADD: STORE (x) and o(x) = 3:

(PUSH(1) : LOAD(x) : ADD: STORE(x), €, 0)
> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)

m' Semantics and Verification of Software Winter semester 2008,/09 9

A Terminating Computation

Example 24.4

For d := PUSH(1) :LOAD(x) : ADD: STORE (x) and o(x) = 3:

(PUSH(1) :LOAD(x) : ADD: STORE(x), €, 0)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)

m' Semantics and Verification of Software Winter semester 2008,/09 9

A Terminating Computation

Example 24.4

For d := PUSH(1) :LOAD(x) : ADD: STORE (x) and o(x) = 3:

(PUSH(1) :LOAD(x) : ADD: STORE(x), €, 0)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)
>

g,€,0[x — 4])

m' Semantics and Verification of Software Winter semester 2008,/09 9

A Looping Computation

Example 24.5

(LOOP (TRUE, NOOP), €, o)

m' Semantics and Verification of Software Winter semester 2008,/09 10

A Looping Computation

Example 24.5

(LOOP (TRUE, NOOP), €, o)
> (TRUE:BRANCH (NOOP : LOOP (TRUE, NOOP) ,NOOP), £,)

m' Semantics and Verification of Software Winter semester 2008,/09 10

A Looping Computation

Example 24.5

(LOOP (TRUE, NOOP), €, o)
> (TRUE:BRANCH (NOOP : LOOP (TRUE, NOOP) ,NOOP), £,)
> (BRANCH(NOOP:LOOP (TRUE,NOOP) ,NOOP), true, o)

m' Semantics and Verification of Software Winter semester 2008,/09 10

A Looping Computation

Example 24.5

(LOOP (TRUE, NOOP), €, o)
> (TRUE:BRANCH (NOOP : LOOP (TRUE, NOOP) ,NOOP), £,)
> (BRANCH(NOOP:LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP(TRUE,NOOP), ¢, o)

m Semantics and Verification of Software Winter semester 2008,/09 10

A Looping Computation

Example 24.5

(LOOP (TRUE,NOOP), ¢, o)
> (TRUE:BRANCH (NOOP : LOOP (TRUE,NOOP) ,NOOP), ¢, o')
> (BRANCH(NOOP:LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP(TRUE,NOOP), ¢, o)
> (LOOP(TRUE,NOOP), ¢, 0)

m Semantics and Verification of Software Winter semester 2008,/09 10

A Looping Computation

Example 24.5

(LOOP (TRUE,NOOP), ¢, o)

> (TRUE:BRANCH (NOOP : LOOP (TRUE,NOOP) ,NOOP), ¢, o')
(BRANCH (NDOP : LOOP (TRUE,, NOOP) , NOOP), true, o)
(NOOP : LOOP (TRUE, NOOP), £, o)
(LOOP (TRUE, NOOP), ¢, o)

>
>
>
>

m Semantics and Verification of Software Winter semester 2008,/09 10

© Properties of AM

Rm Semantics and Verification of Software ter semester 2008

A New Inductive Principle

Application: Computation sequences (Def. 24.3)

Definition: e for each v € Cnf, «v is a computation sequence (of

length 0)
@ whenever v9,71,...,7 is a computation sequence
and Y B Vi+1, then Y0, V15 - - -5 Vies V41 is a

computation sequence (of length k + 1)

Induction base: property holds for all computation sequences of length
0

Induction hypothesis: property holds for all computation sequences of
length < k&

Induction step: property holds for all computation sequences of length
k+1

m' Semantics and Verification of Software Winter semester 2008,/09 12

Application: Extension of Code and Stack

If (dy,e1,0) >* (d',€,0'), then (dy : da, ey : ea,0) >* (d' : da, € : ea,07).

Interpretation: both the code and the stack component can be
extended without changing the behavior of the machine

Rm Semantics and Verification of Software Winter semester 2008,/09 13

Application: Extension of Code and Stack

If (dy,e1,0) >* (d',€,0'), then (dy : da, ey : ea,0) >* (d' : da, € : ea,07).

Interpretation: both the code and the stack component can be
extended without changing the behavior of the machine

by induction on the length of the computation sequence
(on the board) O

m' Semantics and Verification of Software Winter semester 2008,/09 13

Another Property: Determinism

The semantics of AM is deterministic: for all v, ,7" € Cnf,
vy and v >+" imply v =+".

Rm Semantics and Verification of Software Winter semester 2008,/09 14

Another Property: Determinism
Lemma 24.7

The semantics of AM is deterministic: for all v, ,7" € Cnf,
vy and v >+" imply v =+".

The successor configuration is determined by the first instruction in the

code component, which is unique]
v,

Winter semester 2008,/09 14

Semantics and Verification of Software

Another Property: Determinism

Lemma 24.7
The semantics of AM is deterministic: for all v,7',7" € Cnf,
vy and v >+" imply v =+".

| A\

Proof.
The successor configuration is determined by the first instruction in the
code component, which is unique]

4

Thus the following function is well defined:

Definition 24.8

The semantics of an instruction sequence is given by the mapping
M[.] : Code — (X --+ %),

defined by
- o' if <d?€?0-> >* <€,€,O‘l>
Md] (o) := {undeﬁned otherwise

Semantics and Verification of Software Winter semester 2008,/09 14

@ The Compiler

Rm Semantics and Verification of Software inter semester 2008/

Repetition: Syntax of WHILE Programs

Definition (Syntax of WHILE (Def. 1.2))

The syntax of WHILE programs is defined by the following
context-free grammar:

a:=z|x|ai+as | ai-as | ai*as € AExp
b=t ‘ a1=a9 | a1>a9 | —b ’ b1 A by ‘ b1V by € BExp
cu=skip |z :=a|c1;co | if b then ¢; else ¢ | while b do ¢ € Cmd

v

m' Semantics and Verification of Software Winter semester 2008,/09 16

Translation of Arithmetic Expressions
Definition 24.9

The translation function
Tal.] : AExp — Code

is given by
%alz] = PUSH(2)
Talz] := LOAD(x)
‘Za[[a1+a2]] = Za[[ag]] : ‘Za[[al]] : ADD
‘Za[[al—ag]] = Za[[ag]] : ‘Za[[al]] : SUB
Talar*az] = Fylas] : Tufar] : MULT

Semantics and Verification of Software Winter semester 2008,/09 17

Translation of Arithmetic Expressions
Definition 24.9

The translation function
Toll.] : AExp — Code

is given by
%alz] = PUSH(2)
Talz] := LOAD(x)
‘Za[[a1+a2]] = Za[[ag]] : ‘Za[[al]] : ADD
‘Za[[al—ag]] = Za[[ag]] : ‘Za[[al]] : SUB
Talar*az] = Fylas] : Tufar] : MULT

Talx + 1] = F,[1] : To[x] : ADD

m' Semantics and Verification of Software Winter semester 2008,/09 17

Translation of Arithmetic Expressions
Definition 24.9

The translation function
Toll.] : AExp — Code

is given by
%alz] = PUSH(2)
Talz] := LOAD(x)
‘Za[[a1+a2]] = Za[[ag]] : ‘Za[[al]] : ADD
‘Za[[al—ag]] = Za[[ag]] : ‘Za[[al]] : SUB
Talar*az] = Fylas] : Tufar] : MULT

Talx + 1] = F,[1] : To[x] : ADD
= PUSH(1) : LOAD(x) : ADD

m' Semantics and Verification of Software Winter semester 2008,/09 17

Translation of Boolean Expressions

Definition 24.11

The translation function
Tp[.] : BExp — Code

is given by
Tp[true] := TRUE
Tp[false] := FALSE
Tb[[CLl:ag]] = Ta[[ag]] : Za[[al]] : EQ
Tplar>az] = Fyflaz] : Tyfar] : GT
Tp[0] := T[] : NEG
Tb[[bl VAN CLQ]] = Tb[[bQ]] : Tb[[bl]] : AND
Tb[[bl vV CLQ]] = Tb[[bQ]] : Tb[[bl]] : 0R

Semantics and Verification of Software Winter semester 2008,/09

Translation of Statements

Definition 24.12

The translation function T.[.] : Cmd — Code is given by
T.[skip] := NOOP
Telz :=a] := T,[a] : STORE(z)
Telersea] = Telea] - Felez]
TcJif b then ¢; else co] := F[b] : BRANCH(Z [c1], Fc[e2])
Tc[while b do ¢] := LOOP(Z,[b],Zc[c])

m' Semantics and Verification of Software

Winter semester 2008,/09 19

Translation of Statements

Definition 24.12

The translation function T.[.] : Cmd — Code is given by
T.[skip] := NOOP
Telz :=a] := T,[a] : STORE(z)
Telersea] = Telea] - Felez]
TcJif b then ¢; else co] := F[b] : BRANCH(Z [c1], Fc[e2])
Tc[while b do ¢] := LOOP(Z,[b],Zc[c])

Example 24.13 (Factorial program)

Tely:=1; while —(x=1) do (y:=y*x; x:=x-1)]

Semantics and Verification of Software

Winter semester 2008,/09 19

Translation of Statements

Definition 24.12

The translation function T.[.] : Cmd — Code is given by
T.[skip] := NOOP
Telz :=a] := T,[a] : STORE(z)
Telersea] = Telea] - Felez]
TcJif b then ¢; else co] := F[b] : BRANCH(Z [c1], Fc[e2])
Tc[while b do ¢] := LOOP(Z,[b],Zc[c])

Example 24.13 (Factorial program)

Tely:=1; while —(x=1) do (y:=y*x; x:=x-1)]
= T fly:=1] : Tc[while —(x=1) do (y:=y*x; x:=x-1)]

Semantics and Verification of Software

Winter semester 2008,/09 19

Translation of Statements

Definition 24.12

The translation function T.[.] : Cmd — Code is given by
T.[skip] := NOOP
Telz :=a] := T,[a] : STORE(z)
Telersea] = Telea] - Felez]
TcJif b then ¢; else co] := F[b] : BRANCH(Z [c1], Fc[e2])
Tc[while b do ¢] := LOOP(Z,[b],Zc[c])

Example 24.13 (Factorial program)

Tely:=1; while —(x=1) do (y:=y*x; x:=x-1)]
= T fly:=1] : Tc[while —(x=1) do (y:=y*x; x:=x-1)]
= T,[1] : STORE(y) : LOOP (Zp[~(x=1)], T [y:=y*x; x:=x-1])

Semantics and Verification of Software

Winter semester 2008,/09 19

Translation of Statements
Definition 24.12

The translation function T.[.] : Cmd — Code is given by
T.[skip] := NOOP
Telz :=a] := T,[a] : STORE(z)
Telersea] = Telea] - Felez]
TcJif b then ¢; else co] := F[b] : BRANCH(Z [c1], Fc[e2])
Tc[while b do ¢] := LOOP(Z,[b],Zc[c])

Example 24.13 (Factorial program)

Tely:=1; while —(x=1) do (y:=y*x; x:=x-1)]

= T fly:=1] : Tc[while —(x=1) do (y:=y*x; x:=x-1)]

= T,[1] : STORE(y) : LOOP (Zp[~(x=1)], T,y :=y*x; x:=x-1])

= PUSH(1) : STORE(y) : LOOP (%, [x=1] : NEG, T [y : =y*x[T [x: =x-1])

Semantics and Verification of Software Winter semester 2008,/09 19

Translation of Statements
Definition 24.12

The translation function T.[.] : Cmd — Code is given by
T.[skip] := NOOP
Telz :=a] := T,[a] : STORE(z)
Telersea] = Telea] - Felez]
TcJif b then ¢; else co] := F[b] : BRANCH(Z [c1], Fc[e2])
Tc[while b do ¢] := LOOP(Z,[b],Zc[c])

Example 24.13 (Factorial program)

Tely:=1; while —(x=1) do (y:=y*x; x:=x-1)]

= T fly:=1] : Tc[while —(x=1) do (y:=y*x; x:=x-1)]

= T,[1] : STORE(y) : LOOP (Zp[~(x=1)], T,y :=y*x; x:=x-1])

= PUSH(1) : STORE(y) : LOOP (%, [x=1] : NEG, T [y : =y*x[T [x: =x-1])

= PUSH(1) : STORE(y) : LOOP (PUSH(1) : LOAD(x) : EQ: NEG,
LOAD(x) : LOAD(y) :MULT: STORE(y) :
PUSH(1) : LOAD(x) : SUB: STORE(x))

Semantics and Verification of Software Winter semester 2008,/09 19

	Introduction
	The Abstract Machine
	Properties of AM
	The Compiler

