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Compiler Correctness

programming language
compiler
−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:

Definition of abstract machine

Definition (operational) semantics of machine instructions

Definition of translation WHILE → machine code (“compiler”)

Proof: semantics of generated machine code = semantics of
original source code
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The Abstract Machine

Definition 24.1

The abstract machine (AM) is given by

configurations of the form 〈d, e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

final configurations of the form 〈ε, e, σ〉

code sequences and instructions:

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Winter semester 2008/09 5



Semantics of AM-Code

Definition 24.2
The transition relation ⊲ ⊆ Cnf × Cnf is given by

〈PUSH(z) : d, e, σ〉 ⊲ 〈d, z : e, σ〉
〈ADD : d, z1 : z2 : e, σ〉 ⊲ 〈d, (z1 + z2) : e, σ〉

〈MULT : d, z1 : z2 : e, σ〉 ⊲ 〈d, (z1 ∗ z2) : e, σ〉
〈SUB : d, z1 : z2 : e, σ〉 ⊲ 〈d, (z1 − z2) : e, σ〉

〈TRUE : d, e, σ〉 ⊲ 〈d, true : e, σ〉
〈FALSE : d, e, σ〉 ⊲ 〈d, false : e, σ〉

〈EQ : d, z1 : z2 : e, σ〉 ⊲ 〈d, (z1 = z2) : e, σ〉
〈GT : d, z1 : z2 : e, σ〉 ⊲ 〈d, (z1 > z2) : e, σ〉
〈AND : d, t1 : t2 : e, σ〉 ⊲ 〈d, (t1 ∧ t2) : e, σ〉
〈OR : d, t1 : t2 : e, σ〉 ⊲ 〈d, (t1 ∨ t2) : e, σ〉

〈NEG : d, t : e, σ〉 ⊲ 〈d,¬t : e, σ〉
〈LOAD(x) : d, e, σ〉 ⊲ 〈d, σ(x) : e, σ〉

〈STORE(x) : d, z : e, σ〉 ⊲ 〈d, e, σ[x 7→ z]〉
〈NOOP : d, e, σ〉 ⊲ 〈d, e, σ〉

〈BRANCH(dtrue,dfalse) : d, t : e, σ〉 ⊲ 〈dt : d, e, σ〉
〈LOOP(d1,d2) : d, e, σ〉 ⊲ 〈d1 :BRANCH(d2:LOOP(d1,d2),NOOP):d, e, σ〉
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Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d, e, m〉 with memory m ∈ Z
∗

LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels)
and jumping instructions

configurations 〈pc, d, e, m〉 with program counter pc ∈ N

BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values (in place of evaluation
stack e)
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Terminating and Looping Computations

Definition 24.3

A terminating computation is a finite configuration sequence of
the form γ0, γ1, . . . , γk where

γ0 = 〈d, ε, σ〉
γi−1 ⊲ γi for each i ∈ k (k ∈ N)
there is no γ such that γk ⊲ γ

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where

γ0 = 〈d, ε, σ〉
γi ⊲ γi+1 for each i ∈ N

there is no γ such that γk ⊲ γ

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)
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A Terminating Computation

Example 24.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉

⊲ 〈LOAD(x):ADD:STORE(x), 1, σ〉

⊲ 〈ADD:STORE(x), 3 : 1, σ〉

⊲ 〈STORE(x), 4, σ〉

⊲ 〈ε, ε, σ[x 7→ 4]〉
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A Looping Computation

Example 24.5

〈LOOP(TRUE,NOOP), ε, σ〉

⊲ 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉

⊲ 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉

⊲ 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉

⊲ 〈LOOP(TRUE,NOOP), ε, σ〉

⊲ . . .
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A New Inductive Principle

Application: Computation sequences (Def. 24.3)

Definition: for each γ ∈ Cnf , γ is a computation sequence (of
length 0)
whenever γ0, γ1, . . . , γk is a computation sequence
and γk ⊲ γk+1, then γ0, γ1, . . . , γk, γk+1 is a
computation sequence (of length k + 1)

Induction base: property holds for all computation sequences of length
0

Induction hypothesis: property holds for all computation sequences of
length ≤ k

Induction step: property holds for all computation sequences of length
k + 1
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Application: Extension of Code and Stack

Lemma 24.6

If 〈d1, e1, σ〉 ⊲
∗ 〈d′, e′, σ′〉, then 〈d1 : d2, e1 : e2, σ〉 ⊲

∗ 〈d′ : d2, e
′ : e2, σ

′〉.

Interpretation: both the code and the stack component can be
extended without changing the behavior of the machine

Proof.

by induction on the length of the computation sequence
(on the board)
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Another Property: Determinism

Lemma 24.7

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,

γ ⊲ γ′ and γ ⊲ γ′′ imply γ′ = γ′′.

Proof.

The successor configuration is determined by the first instruction in the
code component, which is unique

Thus the following function is well defined:

Definition 24.8

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdK(σ) :=

{

σ′ if 〈d, ε, σ〉 ⊲
∗ 〈ε, e, σ′〉

undefined otherwise
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Repetition: Syntax of WHILE Programs

Definition (Syntax of WHILE (Def. 1.2))

The syntax of WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd
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Translation of Arithmetic Expressions

Definition 24.9

The translation function

TaJ.K : AExp → Code

is given by
TaJzK := PUSH(z)
TaJxK := LOAD(x)

TaJa1+a2K := TaJa2K : TaJa1K : ADD
TaJa1-a2K := TaJa2K : TaJa1K : SUB
TaJa1*a2K := TaJa2K : TaJa1K : MULT

Example 24.10

TaJx + 1K = TaJ1K : TaJxK : ADD
= PUSH(1) : LOAD(x) : ADD
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Translation of Boolean Expressions

Definition 24.11

The translation function

TbJ.K : BExp → Code

is given by
TbJtrueK := TRUE
TbJfalseK := FALSE

TbJa1=a2K := TaJa2K : TaJa1K : EQ
TbJa1>a2K := TaJa2K : TaJa1K : GT

TbJ¬bK := TbJbK : NEG
TbJb1 ∧ a2K := TbJb2K : TbJb1K : AND
TbJb1 ∨ a2K := TbJb2K : TbJb1K : OR
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Translation of Statements

Definition 24.12

The translation function TcJ.K : Cmd → Code is given by
TcJskipK := NOOP

TcJx := aK := TaJaK : STORE(x)
TcJc1;c2K := TcJc1K : TcJc2K

TcJif b then c1 else c2K := TbJbK : BRANCH(TcJc1K,TcJc2K)
TcJwhile b do cK := LOOP(TbJbK,TcJcK)

Example 24.13 (Factorial program)

TcJy:=1; while ¬(x=1) do (y:=y*x; x:=x-1)K
= TcJy:=1K : TcJwhile ¬(x=1) do (y:=y*x; x:=x-1)K
= TaJ1K : STORE(y) : LOOP(TbJ¬(x=1)K,TcJy:=y*x; x:=x-1K)
= PUSH(1) : STORE(y) : LOOP(TbJx=1K:NEG,TcJy:=y*xKTcJx:=x-1K)
...
= PUSH(1) : STORE(y) : LOOP(PUSH(1):LOAD(x):EQ:NEG,

LOAD(x):LOAD(y):MULT:STORE(y):
PUSH(1):LOAD(x):SUB:STORE(x))
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