
Semantics and Verification of Software

Lecture 24: Provably Correct Implementation I
(Abstract Machine & Compiler)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Introduction

2 The Abstract Machine

3 Properties of AM

4 The Compiler

Semantics and Verification of Software Winter semester 2008/09 2

Compiler Correctness

programming language
compiler
−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:

Definition of abstract machine

Definition (operational) semantics of machine instructions

Definition of translation WHILE → machine code (“compiler”)

Proof: semantics of generated machine code = semantics of
original source code

Semantics and Verification of Software Winter semester 2008/09 3

Outline

1 Introduction

2 The Abstract Machine

3 Properties of AM

4 The Compiler

Semantics and Verification of Software Winter semester 2008/09 4

The Abstract Machine

Definition 24.1

The abstract machine (AM) is given by

configurations of the form 〈d, e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

final configurations of the form 〈ε, e, σ〉

code sequences and instructions:

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Winter semester 2008/09 5

Semantics of AM-Code

Definition 24.2
The transition relation ⊲ ⊆ Cnf × Cnf is given by

〈PUSH(z) : d, e, σ〉 ⊲ 〈d, z : e, σ〉
〈ADD : d, z1 : z2 : e, σ〉 ⊲ 〈d, (z1 + z2) : e, σ〉

〈MULT : d, z1 : z2 : e, σ〉 ⊲ 〈d, (z1 ∗ z2) : e, σ〉
〈SUB : d, z1 : z2 : e, σ〉 ⊲ 〈d, (z1 − z2) : e, σ〉

〈TRUE : d, e, σ〉 ⊲ 〈d, true : e, σ〉
〈FALSE : d, e, σ〉 ⊲ 〈d, false : e, σ〉

〈EQ : d, z1 : z2 : e, σ〉 ⊲ 〈d, (z1 = z2) : e, σ〉
〈GT : d, z1 : z2 : e, σ〉 ⊲ 〈d, (z1 > z2) : e, σ〉
〈AND : d, t1 : t2 : e, σ〉 ⊲ 〈d, (t1 ∧ t2) : e, σ〉
〈OR : d, t1 : t2 : e, σ〉 ⊲ 〈d, (t1 ∨ t2) : e, σ〉

〈NEG : d, t : e, σ〉 ⊲ 〈d,¬t : e, σ〉
〈LOAD(x) : d, e, σ〉 ⊲ 〈d, σ(x) : e, σ〉

〈STORE(x) : d, z : e, σ〉 ⊲ 〈d, e, σ[x 7→ z]〉
〈NOOP : d, e, σ〉 ⊲ 〈d, e, σ〉

〈BRANCH(dtrue,dfalse) : d, t : e, σ〉 ⊲ 〈dt : d, e, σ〉
〈LOOP(d1,d2) : d, e, σ〉 ⊲ 〈d1 :BRANCH(d2:LOOP(d1,d2),NOOP):d, e, σ〉

Semantics and Verification of Software Winter semester 2008/09 6

Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d, e, m〉 with memory m ∈ Z
∗

LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels)
and jumping instructions

configurations 〈pc, d, e, m〉 with program counter pc ∈ N

BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values (in place of evaluation
stack e)

Semantics and Verification of Software Winter semester 2008/09 7

Terminating and Looping Computations

Definition 24.3

A terminating computation is a finite configuration sequence of
the form γ0, γ1, . . . , γk where

γ0 = 〈d, ε, σ〉
γi−1 ⊲ γi for each i ∈ k (k ∈ N)
there is no γ such that γk ⊲ γ

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where

γ0 = 〈d, ε, σ〉
γi ⊲ γi+1 for each i ∈ N

there is no γ such that γk ⊲ γ

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)

Semantics and Verification of Software Winter semester 2008/09 8

A Terminating Computation

Example 24.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉

⊲ 〈LOAD(x):ADD:STORE(x), 1, σ〉

⊲ 〈ADD:STORE(x), 3 : 1, σ〉

⊲ 〈STORE(x), 4, σ〉

⊲ 〈ε, ε, σ[x 7→ 4]〉

Semantics and Verification of Software Winter semester 2008/09 9

A Looping Computation

Example 24.5

〈LOOP(TRUE,NOOP), ε, σ〉

⊲ 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉

⊲ 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉

⊲ 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉

⊲ 〈LOOP(TRUE,NOOP), ε, σ〉

⊲ . . .

Semantics and Verification of Software Winter semester 2008/09 10

Outline

1 Introduction

2 The Abstract Machine

3 Properties of AM

4 The Compiler

Semantics and Verification of Software Winter semester 2008/09 11

A New Inductive Principle

Application: Computation sequences (Def. 24.3)

Definition: for each γ ∈ Cnf , γ is a computation sequence (of
length 0)
whenever γ0, γ1, . . . , γk is a computation sequence
and γk ⊲ γk+1, then γ0, γ1, . . . , γk, γk+1 is a
computation sequence (of length k + 1)

Induction base: property holds for all computation sequences of length
0

Induction hypothesis: property holds for all computation sequences of
length ≤ k

Induction step: property holds for all computation sequences of length
k + 1

Semantics and Verification of Software Winter semester 2008/09 12

Application: Extension of Code and Stack

Lemma 24.6

If 〈d1, e1, σ〉 ⊲
∗ 〈d′, e′, σ′〉, then 〈d1 : d2, e1 : e2, σ〉 ⊲

∗ 〈d′ : d2, e
′ : e2, σ

′〉.

Interpretation: both the code and the stack component can be
extended without changing the behavior of the machine

Proof.

by induction on the length of the computation sequence
(on the board)

Semantics and Verification of Software Winter semester 2008/09 13

Another Property: Determinism

Lemma 24.7

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,

γ ⊲ γ′ and γ ⊲ γ′′ imply γ′ = γ′′.

Proof.

The successor configuration is determined by the first instruction in the
code component, which is unique

Thus the following function is well defined:

Definition 24.8

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdK(σ) :=

{

σ′ if 〈d, ε, σ〉 ⊲
∗ 〈ε, e, σ′〉

undefined otherwise

Semantics and Verification of Software Winter semester 2008/09 14

Outline

1 Introduction

2 The Abstract Machine

3 Properties of AM

4 The Compiler

Semantics and Verification of Software Winter semester 2008/09 15

Repetition: Syntax of WHILE Programs

Definition (Syntax of WHILE (Def. 1.2))

The syntax of WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Semantics and Verification of Software Winter semester 2008/09 16

Translation of Arithmetic Expressions

Definition 24.9

The translation function

TaJ.K : AExp → Code

is given by
TaJzK := PUSH(z)
TaJxK := LOAD(x)

TaJa1+a2K := TaJa2K : TaJa1K : ADD
TaJa1-a2K := TaJa2K : TaJa1K : SUB
TaJa1*a2K := TaJa2K : TaJa1K : MULT

Example 24.10

TaJx + 1K = TaJ1K : TaJxK : ADD
= PUSH(1) : LOAD(x) : ADD

Semantics and Verification of Software Winter semester 2008/09 17

Translation of Boolean Expressions

Definition 24.11

The translation function

TbJ.K : BExp → Code

is given by
TbJtrueK := TRUE
TbJfalseK := FALSE

TbJa1=a2K := TaJa2K : TaJa1K : EQ
TbJa1>a2K := TaJa2K : TaJa1K : GT

TbJ¬bK := TbJbK : NEG
TbJb1 ∧ a2K := TbJb2K : TbJb1K : AND
TbJb1 ∨ a2K := TbJb2K : TbJb1K : OR

Semantics and Verification of Software Winter semester 2008/09 18

Translation of Statements

Definition 24.12

The translation function TcJ.K : Cmd → Code is given by
TcJskipK := NOOP

TcJx := aK := TaJaK : STORE(x)
TcJc1;c2K := TcJc1K : TcJc2K

TcJif b then c1 else c2K := TbJbK : BRANCH(TcJc1K,TcJc2K)
TcJwhile b do cK := LOOP(TbJbK,TcJcK)

Example 24.13 (Factorial program)

TcJy:=1; while ¬(x=1) do (y:=y*x; x:=x-1)K
= TcJy:=1K : TcJwhile ¬(x=1) do (y:=y*x; x:=x-1)K
= TaJ1K : STORE(y) : LOOP(TbJ¬(x=1)K,TcJy:=y*x; x:=x-1K)
= PUSH(1) : STORE(y) : LOOP(TbJx=1K:NEG,TcJy:=y*xKTcJx:=x-1K)
...
= PUSH(1) : STORE(y) : LOOP(PUSH(1):LOAD(x):EQ:NEG,

LOAD(x):LOAD(y):MULT:STORE(y):
PUSH(1):LOAD(x):SUB:STORE(x))

Semantics and Verification of Software Winter semester 2008/09 19

	Introduction
	The Abstract Machine
	Properties of AM
	The Compiler

