Semantics and Verification of Software

Lecture 25: Provably Correct Implementation IT
(Compiler Correctness)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Repetition: Abstract Machine & Compiler

Rm Semantics and fication of Software Winter semester 2008

Compiler Correctness

. compiler .
programming language =~ —— machine code
semantics | | (simple) semantics
meaning Z meaning
To do:

@ Definition of abstract machine
@ Definition (operational) semantics of machine instructions
@ Definition of translation WHILE — machine code (“compiler”)
@ Proof: semantics of generated machine code = semantics of

original source code

Rm Semantics and fication of Software Winter semester 2008

The Abstract Machine

The abstract machine (AM) is given by
@ configurations of the form (d,e,o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
9 e € Stk := (ZUB)* is the evaluation stack
o 0 € ¥ :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x X)
o final configurations of the form (e, e, o)
@ code sequences and instructions:
du=cl|i:d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD () | STORE (z) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z € Z and x € Var)

Semantics and Verification of Software Winter semester 2008,/09

Translation of Arithmetic Expressions

The translation function
Toll.] : AExp — Code

is given by
%alz] = PUSH(2)
Talz] := LOAD(x)
‘Za[[a1+a2]] = Za[[ag]] : ‘Za[[al]] : ADD
‘Za[[al—ag]] = Za[[ag]] : ‘Za[[al]] : SUB
Talar*az] = Fylas] : Tufar] : MULT

Talx + 1] = F,[x] : T,[1] : ADD
= LOAD(x) : PUSH(1) : ADD

m' Semantics and Verification of Software Winter semester 2008,/09

Translation of Boolean Expressions

The translation function
Tp[.] : BExp — Code

is given by
Tp[true] := TRUE
Tp[false] := FALSE
Tb[[CLl:ag]] = Ta[[ag]] : Za[[al]] : EQ
Tplar>az] = Fyflaz] : Tyfar] : GT
Tp[0] := T[] : NEG
Tb[[bl VAN CLQ]] = Tb[[bQ]] : Tb[[bl]] : AND
Tb[[bl vV CLQ]] = Tb[[bQ]] : Tb[[bl]] : 0R

Semantics and Verification of Software Winter semester 2008,/09 6

Translation of Statements

The translation function T.[.] : Cmd — Code is given by
T.[skip] := NOOP
Telz :=a] := T,[a] : STORE(z)
Telersea] = Telea] - Felez]
TcJif b then ¢; else co] := F[b] : BRANCH(Z [c1], Fc[e2])
Tc[while b do ¢] := LOOP(Z,[b],Zc[c])

Example (Factorial program)

Tely:=1; while —(x=1) do (y:=y*x; x:=x-1)]

= Tcfy:=1] : Tc[while —(x=1) do (y:=y*x; x:=x-1)]

= T,[1] : STORE(y) : LOOP(Zp[(x=1)], T, [y:=y*x; x:=x-1])

= PUSH(1) : STORE(y) : LOOP (%,[x=1] : NEG, T, [y : =y*x[T [x:=x-1])

= PUSH(1) : STORE(y) : LOOP(PUSH(1) :LOAD(x) :EQ:NEG,
LOAD(x) : LOAD(y) :MULT: STORE(y) :
PUSH(1) : LOAD(x) : SUB: STORE(x))

Semantics and Verification of Software Winter semester 2008,/09

© Another Execution Example

Rm Semantics and Verification of Software ter semester 2008

Execution of Factorial Program

Example 25.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) : LOAD(x) :EQ:NEG, and
dg = LOAD(x) :LOAD (y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(l) :STORE(y) :LOOP(d1 ,d2) , &0 >
> (STORE(y) :LOOP (d1 ,d2) ., 1,0)
> (LOOP(dy ,d2) , g, oly—1)
> (d1 :BRANCH(d : LOOP (d ,d2) ,NOOP) . e oy 1)
> (LOAD (x) :EQ:NEG: BRANCH(d> : LOOP (dy ,d2) ,NOOP) S)
I> (EQ:NEG:BRANCH(dy :LOOP (dy ,d2) ,NOOP) 0201, ofy— 1)
> (NEG:BRANCH(dp : LOOP(d ,do) ,NOOP) , false, ofy — 1)
> (BRANCH(d> :LOOP (d; ,d2) ,NOOP) , true, oy — 1)
> (d2:LO0OP(d1 ,d2) , e, oly—1)
B> (LOAD(y) :MULT: STORE(y) : PUSH (1) : LOAD (x) : SUB: STORE(x) : LOOP(d1 ,d2), 2, oy — 1)
> (MULT:STORE(Y) :PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2) ,1:2, 0ly—1 >
> (STORE(y) :PUSH(1) : LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) 9 2,0ly—1 >
D> (PUSH(1) :LOAD (x) : SUB: STORE (x) : LOOP (d ,d2) , e oy 2)
D> (LOAD(x) : SUB:STORE (x) : LOOP (d1 ,d2) , Loly—2)
> (SUB:STORE(x) : LOOP(d; ,d2) ,2:1, 0ly— 2)
D> (STORE(x) :LOOP(ds ,d2) . 1,oly—2)
> (LOOP(dy ,d2) , g, olz— 1,y 2])
> (d1 :BRANCH(d2 :LOOP(d1 ,d2) ,NOOP) , g, olz— 1,y 2])
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) s 1, olz— 1,y — 2|)
I> (EQ:NEG:BRANCH(dy :LOOP (dy ,d2) ,NOOP) J1:1, oz 1y 2)
> (NEG:BRANCH(ds :LOOP(d ,d2) ,NOOP) , true, olz — 1,y — 2])
> (BRANCH(d3 :LOOP (ds ,d2) ,NOOP) , false, oz — 1,y — 2])
> (NOOP , &oz—1ly—2])
> (e y s oz ly—2)

m Semantics and Verification of Software Winter semester 2008,/09

© Proof of Compiler Correctness

Rm Semantics and Verification of Software ter semester 2008

Correctness of T,[.]

Definition (Repetition: Semantics of arithm. expr. (Def. 4.4))

The (denotational) semantic functional for arithmetic expressions,
A[.] : AEzp — (X — Z),
is given by:
Alz]o = = Alar+az]o := Afar]o + AJaz]o
Wlz]o = o(z) Alar-as]o := Ufai]o — Afaz]o
Wlar*as]o := Ufai]o * Afaz]o

Lemma 25.2 (Correctness of T,[.])

For every a € AExp and 0 € X3,

(Zala],e,0) >* (e, U[a]o, o)

by induction on the syntactic structure of a (on the board)

m' Semantics and Verification of Software Winter semester 2008,/09 11

Repetition: Semantics of Boolean Expressions

Definition (Semantics of Boolean expressions (Def. 4.5))

The (denotational) semantic functional for Boolean expressions,
B[.] : BEzp — (X — B),
is given by:
Bt]o =t
_ _ Jtrue if Afa1]o = Afas]o
Blar=az]o = false otherwise
_ Jtrue if Afai]o > Afas]o
] S e
_ ftrue if B[b]o = false
B[-b]o = false otherwise
L true lf %[[bl]]o' = %[[bZ]]U = true
Blbr Abs]o = false otherwise
_ [false if B[b1]o = B[be]o = false
%[[bl v b2]]a ") true otherwise

m' Semantics and Verification of Software Winter semester 2008,/09 12

Correctness of T[]

Lemma 25.3 (Correctness of T,[.])

For every b € BExp and o € X,

(T[b], &, 0) >* (e, B[b]o, o)

by induction on the syntactic structure of b (omitted)

m' Semantics and Verification of Software Winter semester 2008,/09 13

Correctness of T [.] I

Definition (Repetition: Operational functional (Def. 4.1))

The functional of the operational semantics,
O[] : Cmd — (£ --» X),
assigns to every statement ¢ € C'md a partial state transformation
Ofc] : ¥ --» X, which is defined as follows:
. e if (¢,0) — o' for some ¢/ € &
Olefo = {undeﬁned otherwise

Definition (Repetition: Semantics of machine code (Def. 24.8))

The semantics of an instruction sequence is given by the mapping
M[.] : Code — (X --» %),
defined by
. e if (d,e,0) >* (e,e,0’)
Mld]o = {undeﬁned otherwise

m' Semantics and Verification of Software Winter semester 2008,/09

Correctness of T.[.] 1I

Theorem 25.4 (Correctness of T.[.])

For every c € Cmd,
O] = M[Zc[]].-

Proof carried out in two parts. First step: from source to machine code

For every c € Cmd and 0,0’ € ¥,

(e,0) — o' implies (T[], e,0) >* (g,e,0").

by induction on the derivation tree of (c,0) — ¢’ (on the board) O

m' Semantics and Verification of Software Winter semester 2008,/09 15

Correctness of T.[.] III

Second step: from machine to source code

For every c € Cmd, 0,0’ € X, and e € Stk,

(T[], e,0) >* (e, e,a’) implies (c,0) — o’ and e = &.

by induction on the length of the computation sequence
(Zelcl, e, 0) >* (e,e,0") (omitted) O

m Semantics and Verification of Software Winter semester 2008,/09 16

	Repetition: Abstract Machine & Compiler
	Another Execution Example
	Proof of Compiler Correctness

