
Semantics and Verification of Software

Lecture 25: Provably Correct Implementation II
(Compiler Correctness)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Repetition: Abstract Machine & Compiler

2 Another Execution Example

3 Proof of Compiler Correctness

Semantics and Verification of Software Winter semester 2008/09 2

Compiler Correctness

programming language
compiler
−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:

Definition of abstract machine

Definition (operational) semantics of machine instructions

Definition of translation WHILE → machine code (“compiler”)

Proof: semantics of generated machine code = semantics of
original source code

Semantics and Verification of Software Winter semester 2008/09 3

The Abstract Machine

Definition

The abstract machine (AM) is given by

configurations of the form 〈d, e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

final configurations of the form 〈ε, e, σ〉

code sequences and instructions:

d ::= ε | i : d

i ::= PUSH(z) | ADD | MULT | SUB |
TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Winter semester 2008/09 4

Translation of Arithmetic Expressions

Definition

The translation function

TaJ.K : AExp → Code

is given by
TaJzK := PUSH(z)
TaJxK := LOAD(x)

TaJa1+a2K := TaJa2K : TaJa1K : ADD
TaJa1-a2K := TaJa2K : TaJa1K : SUB
TaJa1*a2K := TaJa2K : TaJa1K : MULT

Example

TaJx + 1K = TaJxK : TaJ1K : ADD
= LOAD(x) : PUSH(1) : ADD

Semantics and Verification of Software Winter semester 2008/09 5

Translation of Boolean Expressions

Definition

The translation function

TbJ.K : BExp → Code

is given by
TbJtrueK := TRUE
TbJfalseK := FALSE

TbJa1=a2K := TaJa2K : TaJa1K : EQ
TbJa1>a2K := TaJa2K : TaJa1K : GT

TbJ¬bK := TbJbK : NEG
TbJb1 ∧ a2K := TbJb2K : TbJb1K : AND
TbJb1 ∨ a2K := TbJb2K : TbJb1K : OR

Semantics and Verification of Software Winter semester 2008/09 6

Translation of Statements

Definition

The translation function TcJ.K : Cmd → Code is given by
TcJskipK := NOOP

TcJx := aK := TaJaK : STORE(x)
TcJc1;c2K := TcJc1K : TcJc2K

TcJif b then c1 else c2K := TbJbK : BRANCH(TcJc1K,TcJc2K)
TcJwhile b do cK := LOOP(TbJbK,TcJcK)

Example (Factorial program)

TcJy:=1; while ¬(x=1) do (y:=y*x; x:=x-1)K
= TcJy:=1K : TcJwhile ¬(x=1) do (y:=y*x; x:=x-1)K
= TaJ1K : STORE(y) : LOOP(TbJ¬(x=1)K,TcJy:=y*x; x:=x-1K)
= PUSH(1) : STORE(y) : LOOP(TbJx=1K:NEG,TcJy:=y*xKTcJx:=x-1K)
...
= PUSH(1) : STORE(y) : LOOP(PUSH(1):LOAD(x):EQ:NEG,

LOAD(x):LOAD(y):MULT:STORE(y):
PUSH(1):LOAD(x):SUB:STORE(x))

Semantics and Verification of Software Winter semester 2008/09 7

Outline

1 Repetition: Abstract Machine & Compiler

2 Another Execution Example

3 Proof of Compiler Correctness

Semantics and Verification of Software Winter semester 2008/09 8

Execution of Factorial Program

Example 25.1 (Factorial program)

Let σ ∈ Σ with σ(x) = 2, d1 := PUSH(1):LOAD(x):EQ:NEG , and
d2 := LOAD(x):LOAD(y):MULT:STORE(y):PUSH(1):LOAD(x):SUB:STORE(x).

〈PUSH(1):STORE(y):LOOP(d1,d2) , ε, σ 〉
⊲ 〈STORE(y):LOOP(d1,d2) , 1, σ 〉
⊲ 〈LOOP(d1,d2) , ε, σ[y 7→ 1] 〉
⊲ 〈d1:BRANCH(d2:LOOP(d1,d2),NOOP) , ε, σ[y 7→ 1] 〉
⊲ 〈LOAD(x):EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 1, σ[y 7→ 1] 〉
⊲ 〈EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 2 : 1, σ[y 7→ 1] 〉
⊲ 〈NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , false, σ[y 7→ 1] 〉
⊲ 〈BRANCH(d2:LOOP(d1,d2),NOOP) , true, σ[y 7→ 1] 〉
⊲ 〈d2:LOOP(d1,d2) , ε, σ[y 7→ 1] 〉
⊲ 〈LOAD(y):MULT:STORE(y):PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2), 2, σ[y 7→ 1] 〉
⊲ 〈MULT:STORE(y):PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2) , 1 : 2, σ[y 7→ 1] 〉
⊲ 〈STORE(y):PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2) , 2, σ[y 7→ 1] 〉
⊲ 〈PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2) , ε, σ[y 7→ 2] 〉
⊲ 〈LOAD(x):SUB:STORE(x):LOOP(d1,d2) , 1, σ[y 7→ 2] 〉
⊲ 〈SUB:STORE(x):LOOP(d1,d2) , 2 : 1, σ[y 7→ 2] 〉
⊲ 〈STORE(x):LOOP(d1,d2) , 1, σ[y 7→ 2] 〉
⊲ 〈LOOP(d1,d2) , ε, σ[x 7→ 1, y 7→ 2]〉
⊲ 〈d1:BRANCH(d2:LOOP(d1,d2),NOOP) , ε, σ[x 7→ 1, y 7→ 2]〉
⊲ 〈LOAD(x):EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 1, σ[x 7→ 1, y 7→ 2]〉
⊲ 〈EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 1 : 1, σ[x 7→ 1, y 7→ 2]〉
⊲ 〈NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , true, σ[x 7→ 1, y 7→ 2]〉
⊲ 〈BRANCH(d2:LOOP(d1,d2),NOOP) , false, σ[x 7→ 1, y 7→ 2]〉
⊲ 〈NOOP , ε, σ[x 7→ 1, y 7→ 2]〉
⊲ 〈ε , ε, σ[x 7→ 1, y 7→ 2]〉

Semantics and Verification of Software Winter semester 2008/09 9

Outline

1 Repetition: Abstract Machine & Compiler

2 Another Execution Example

3 Proof of Compiler Correctness

Semantics and Verification of Software Winter semester 2008/09 10

Correctness of TaJ.K

Definition (Repetition: Semantics of arithm. expr. (Def. 4.4))

The (denotational) semantic functional for arithmetic expressions,
AJ.K : AExp → (Σ → Z),

is given by:
AJzKσ := z AJa1+a2Kσ := AJa1Kσ + AJa2Kσ
AJxKσ := σ(x) AJa1-a2Kσ := AJa1Kσ − AJa2Kσ

AJa1*a2Kσ := AJa1Kσ ∗ AJa2Kσ

Lemma 25.2 (Correctness of TaJ.K)

For every a ∈ AExp and σ ∈ Σ,

〈TaJaK, ε, σ〉 ⊲
∗ 〈ε,AJaKσ, σ〉

Proof.

by induction on the syntactic structure of a (on the board)

Semantics and Verification of Software Winter semester 2008/09 11

Repetition: Semantics of Boolean Expressions

Definition (Semantics of Boolean expressions (Def. 4.5))

The (denotational) semantic functional for Boolean expressions,
BJ.K : BExp → (Σ → B),

is given by:
BJtKσ := t

BJa1=a2Kσ :=

{

true if AJa1Kσ = AJa2Kσ
false otherwise

BJa1>a2Kσ :=

{

true if AJa1Kσ > AJa2Kσ
false otherwise

BJ¬bKσ :=

{

true if BJbKσ = false

false otherwise

BJb1 ∧ b2Kσ :=

{

true if BJb1Kσ = BJb2Kσ = true

false otherwise

BJb1 ∨ b2Kσ :=

{

false if BJb1Kσ = BJb2Kσ = false

true otherwise

Semantics and Verification of Software Winter semester 2008/09 12

Correctness of TbJ.K

Lemma 25.3 (Correctness of TbJ.K)

For every b ∈ BExp and σ ∈ Σ,

〈TbJbK, ε, σ〉 ⊲
∗ 〈ε,BJbKσ, σ〉

Proof.

by induction on the syntactic structure of b (omitted)

Semantics and Verification of Software Winter semester 2008/09 13

Correctness of TcJ.K I

Definition (Repetition: Operational functional (Def. 4.1))

The functional of the operational semantics,
OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation
OJcK : Σ 99K Σ, which is defined as follows:

OJcKσ :=

{

σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Definition (Repetition: Semantics of machine code (Def. 24.8))

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdKσ :=

{

σ′ if 〈d, ε, σ〉 ⊲
∗ 〈ε, e, σ′〉

undefined otherwise

Semantics and Verification of Software Winter semester 2008/09 14

Correctness of TcJ.K II

Theorem 25.4 (Correctness of TcJ.K)

For every c ∈ Cmd,

OJcK = MJTcJcKK.

Proof carried out in two parts. First step: from source to machine code

Lemma 25.5

For every c ∈ Cmd and σ, σ′ ∈ Σ,

〈c, σ〉 → σ′ implies 〈TcJcK, ε, σ〉 ⊲
∗ 〈ε, ε, σ′〉.

Proof.

by induction on the derivation tree of 〈c, σ〉 → σ′ (on the board)

Semantics and Verification of Software Winter semester 2008/09 15

Correctness of TcJ.K III

Second step: from machine to source code

Lemma 25.6

For every c ∈ Cmd, σ, σ′ ∈ Σ, and e ∈ Stk,

〈TcJcK, ε, σ〉 ⊲
∗ 〈ε, e, σ′〉 implies 〈c, σ〉 → σ′ and e = ε.

Proof.

by induction on the length of the computation sequence
〈TcJcK, ε, σ〉 ⊲

∗ 〈ε, e, σ′〉 (omitted)

Semantics and Verification of Software Winter semester 2008/09 16

	Repetition: Abstract Machine & Compiler
	Another Execution Example
	Proof of Compiler Correctness

