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Semantics of Functional Languages I

Program = list of function definitions

Simplest setting: first-order function definitions of the form
f(x1, . . . , xn) = t

function name f
formal parameters x1, . . . , xn

term t over (base and defined) function calls and x1, . . . , xn

Operational semantics (only function calls)
call-by-value case:

t1 → z1 . . . tn → zn t[x1 7→ z1, . . . , xn 7→ zn] → z

f(t1, . . . , tn) → z

call-by-name case:

t[x1 7→ t1, . . . , xn 7→ tn] → z

f(t1, . . . , tn) → z
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Semantics of Functional Languages II

Denotational semantics
program = equation system (for functions)
induces call-by-value and call-by-name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

Extensions: higher-order types, data types, ...
see [Winskel 1996, Sct. 9] and Functional Programming course
[Giesl]
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Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input → Output

not adequate for concurrent settings

Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α→ P

P
α→ P ′

P + Q
α→ P ′

P
α→ P ′

P ‖ Q
α→ P ′ ‖ Q

P
α→ P ′ Q

ᾱ→ Q′

P ‖ Q
τ→ P ′ ‖ Q′

. . .

see course on Modelling Concurrent and Probabilistic Systems in
Summer 2009 [Katoen, Noll] and [Winskel 1996, Sct. 14]
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The COMPASS Project

COMPASS

Correctness, Modelling and Performability of Aerospace Systems

Current Situation

Yes, formal methods are applied for aerospace systems, but not in a
coherent manner at the systems engineering level

Systems Engineering

“Identification and quantification of system goals, creation of
alternative system design concepts, performance of design trades,
selection and implementation of the best design, verification that the
design is properly built and integrated, and post-implementation
assessment of how well the system meets (or met) the goals.”

- NASA’s Systems Engineering Handbook, 1995
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Evaluating Critical Embedded Systems is Hard

?

Software Hardware

Coherency issues

Co-engineering

Analysis of degraded modes of operation
Assessment of Fault Detection, Isolation and Recovery analysis

Semantics and Verification of Software Winter semester 2008/09 8



Evaluating Critical Embedded Systems is Hard

?

Software Hardware

Coherency issues

Co-engineering
Analysis of degraded modes of operation

Assessment of Fault Detection, Isolation and Recovery analysis

Semantics and Verification of Software Winter semester 2008/09 8



Evaluating Critical Embedded Systems is Hard

?

Software Hardware

FDIR

Coherency issues

Co-engineering
Analysis of degraded modes of operation
Assessment of Fault Detection, Isolation and Recovery analysis
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ESA’s Wish

“Provide a unified modelling language that is
amenable for validation and verification”

Three Components

Modelling language
Verification and validation activities
Toolset
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System-Level Integrated Modelling Language

Component-oriented

Sub/supercomponents
Event/data ports
(Functional) nominal behaviour
(Probabilistic) error behaviour
Hybrid behaviour
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System-Level Integrated Modelling Language

0.7

Component-oriented
Sub/supercomponents
Event/data ports
(Functional) nominal behaviour
(Probabilistic) error behaviour

Hybrid behaviour
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System-Level Integrated Modelling Language

f(x)

0.7

Component-oriented
Sub/supercomponents
Event/data ports
(Functional) nominal behaviour
(Probabilistic) error behaviour
Hybrid behaviour
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SLIM Example: Battery

[System] Power.Imp

Nominal

primary

backup

batt1.emptybatt2.empty

primary backup

[Device] Battery.imp: batt1 

Nominal
Error Data

charged

energy‘ = 0.01 
energy‘ >= 20

energy >= 15 
 voltage := f(energy)

depleted

empty => 
 energy < 20

voltage := f(energy)

ok

dead

empty

energy init 100

primary

voltage

voltage

[Device] Battery.imp: batt1 

Nominal
Error Data

charged

energy‘ = 0.01 
energy‘ >= 20

energy >= 15 
 voltage := f(energy)

depleted

empty => 
 energy < 20

voltage := f(energy)

ok

dead

empty

energy init 100

backup

voltage

voltage
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SLIM Example: Battery

device type Battery
features
empty: out event port;
voltage: out data port real;

end Battery;

device implementation Battery.Imp
subcomponents
energy: data continuous initially 100;

modes
charged: initial mode

while energy’=-0.01 and energy>=20;
depleted: mode

while energy’=-0.015;
transitions
charged -[when energy>=15

then voltage:=f(energy)]->
charged;

charged -[empty when energy<20]->
depleted;

depleted -[then voltage:=f(energy)]->
depleted;

end Battery.Imp;
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SLIM Example: Redundant Battery System

system Power
features
voltage: out data port real;

end Power;

system implementation Power.Imp
subcomponents
batt1: device Battery.Imp in modes (primary);
batt2: device Battery.Imp in modes (backup);

connections
data port batt1.voltage -> voltage
in modes (primary);

data port batt2.voltage -> voltage
in modes (backup);

modes
primary: initial mode;
backup: mode;

transitions
primary -[batt1.empty]-> backup;
backup -[batt2.empty]-> primary;

end Power.Imp;
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SLIM Example: Specifying Fault Behaviour

error model BatteryFailure
features
normal: initial state;
dead: error state;

end BatteryFailure;

error model implementation BatteryFailure.Imp
events
fault: error event occurrence poisson 5;

transitions
normal -[fault]-> dead;

end BatteryFailure.Imp;

Fault injection: in error state dead, voltage:=0
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Topics for Theses

1 Visualization of SLIM Specifications
tool: SLIM specification → graphical representation
visualization of hierarchical system structure and component
interconnections
challenge: support dynamic reconfiguration

2 Translation of SLIM into PRO[B]MELA
3 Translation of SLIM into UPPAAL
4 TERMA Case Study
5 Formal Semantics of SLIM Language
6 Minimization of SLIM Models
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Topics for Theses

1 Visualization of SLIM Specifications
2 Translation of SLIM into PRO[B]MELA

PROMELA: input language of SPIN model checker
re-use for validating SLIM specifications
probabilistic extension called PROBMELA
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2 Translation of SLIM into PRO[B]MELA
3 Translation of SLIM into UPPAAL

UPPAAL: tool for modeling, validation and verification of real-time
systems
modeled: networks of timed automata, extended with data types
re-use for validating SLIM specifications
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Topics for Theses

1 Visualization of SLIM Specifications
2 Translation of SLIM into PRO[B]MELA
3 Translation of SLIM into UPPAAL
4 TERMA Case Study

case study from Quasimodo project
goal: model (abstraction of) HW and SW of Attitude and Orbit
Control System (AOCS) of Herschel and Planck satellites

5 Formal Semantics of SLIM Language
6 Minimization of SLIM Models
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Topics for Theses

1 Visualization of SLIM Specifications
2 Translation of SLIM into PRO[B]MELA
3 Translation of SLIM into UPPAAL
4 TERMA Case Study
5 Formal Semantics of SLIM Language

hierarchical semantics has been developed
to be done: “flat” semantics and hybridity

6 Minimization of SLIM Models

Semantics and Verification of Software Winter semester 2008/09 15



Topics for Theses

1 Visualization of SLIM Specifications
2 Translation of SLIM into PRO[B]MELA
3 Translation of SLIM into UPPAAL
4 TERMA Case Study
5 Formal Semantics of SLIM Language
6 Minimization of SLIM Models

problem: state-space explosion
solution: abstraction techniques (bisimulation minimization, ...)
desirable: compositionality
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Courses and Seminars in Summer 2009

Course Advanced Model Checking [Katoen]
Course Modeling Concurrent and Probabilistic Systems
[Katoen/Noll] (“Hiwi” jobs available!)
Course Testing of Reactive Systems [Bohnenkamp]
Seminar Applying Formal Verification Methods to Embedded
Systems [Noll/Schlich]
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Priv.doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (1033682)

Teilbereich: Informatik
Name der/des Lehrenden: Priv.doz. Dr.rer.nat. Thomas Noll
Titel der Lehrveranstaltung:
(Name der Umfrage)

Semantik und Verifikation von Software (1033682)

Profillinie

I realise what the lecture is good for. fully applies does not apply mw=1.5

The lecture is clearly structured. fully applies does not apply mw=1.2

The lecture can be followed-up well with the material (script, textbook,
handouts, …) available.

fully applies does not apply mw=1.3

I have prior knowledge for this lecture. fully applies does not apply mw=3.2

The examples chosen facilitate understanding the lecture’s contents. fully applies does not apply mw=1.2

The lecturer sums up the contents in appropriate intervals. fully applies does not apply mw=1.1

The level of difficulty is ... too high too low mw=1.9

... imparts the contents in an intelligible manner. fully applies does not apply mw=1.2

... responds with great care to questions of      understanding. fully applies does not apply mw=1

... considers the different levels of knowledge of      the students. fully applies does not apply mw=1.6

... speaks loudly and clearly in an appropriate      manner. fully applies does not apply mw=1.1

... speaks proper, comprehensible English. fully applies does not apply mw=1

... is open to improvement suggestions. fully applies does not apply mw=1.2

... is available outside lecture times, e.g. during      business hours or by
email.

fully applies does not apply mw=1.1

The employment of auxiliary materials (blackboard, overhead projector,
projector, demonstrations, ...) is appropriate.

fully applies does not apply mw=1.2

Handwriting and drawings are legible. fully applies does not apply mw=1.1

Blackboard texts and transparencies are clearly arranged. fully applies does not apply mw=1.3

The pace is ... too fast too slow mw=2.1

29.01.2009 EvaSys Auswertung Seite 7



Priv.doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (1033682)

Auswertungsteil der offenen Fragen

In your opinion, what makes the lecture especially bad or good? How can the lecture be improved  (presentation,
media, equipment, …)?   Please note that your handwritten comments may possibly lead back to you. We therefore
suggest that you make your handwritten comments in block letters. Comments made outside the text box will not ...
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Priv.doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (1033382)

Teilbereich: Informatik
Name der/des Lehrenden: Priv.doz. Dr.rer.nat. Thomas Noll
Titel der Lehrveranstaltung:
(Name der Umfrage)

Semantik und Verifikation von Software (1033382)

Profillinie

Lecture and exercise harmonise with regard to contents. fully applies does not apply mw=1.7

Lecture and exercise harmonise with regard to time planning. fully applies does not apply mw=1.4

I realise what the exercise course is good for. fully applies does not apply mw=1.4

The process of the exercise course is well-structured. fully applies does not apply mw=1.9

The exercises chosen facilitate understanding the course content. fully applies does not apply mw=1.4

The exercise tasks are comprehensible. fully applies does not apply mw=2.1

The exercise tasks have a reasonable scope. fully applies does not apply mw=1.9

The solutions presented are comprehensible. fully applies does not apply mw=2.1

In case you could deliver your solution: was it controlled in an
appropriate manner?

fully applies does not apply mw=1.4

The level of difficulty is ... too high too low mw=1.9

... imparts the contents in an intelligible      manner. fully applies does not apply mw=1.9

... responds with great care the questions of      understanding. fully applies does not apply mw=1.8

... considers the different levels of knowledge of      the students. fully applies does not apply mw=2.1

... speaks proper, comprehensible English. fully applies does not apply mw=2

... speaks loudly and clearly in an appropriate      manner. fully applies does not apply mw=1.9

... is open to improvement suggestions. fully applies does not apply mw=1.4

... prepared for this exercise course adequate. fully applies does not apply mw=1.6

... is available outside exercise course times,      e.g. during business
hours or by email.

fully applies does not apply mw=1.3

The employment of auxiliary materials (blackboard, overhead projector,
projector, ...) is appropriate.

fully applies does not apply mw=1.4

Handwriting and drawings are legible. fully applies does not apply mw=2.2

Blackboard texts and transparencies are clearly arranged. fully applies does not apply mw=2.3

The pace is ... too fast too slow mw=2

29.01.2009 EvaSys Auswertung Seite 7



Priv.doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (1033382)

Auswertungsteil der offenen Fragen

In your opinion, what makes this exercise course especially bad or good? How can this exercise course be improved
(presentation, media, equipment, …)?  Please note that your handwritten comments may possibly lead back to you.
We therefore suggest that you make your handwritten comments in block letters. Comments made outside the te...
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