Semantics and Verification of Software

Lecture 2: Operational Semantics of WHILE 1
(Evaluation of Expressions)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Repetition: Syntax of WHILE

Rm Semantics and Verification of Software ter semester 2008

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,-1,...} =z
Truth values B = {true, false} ¢
Variables Var = {x,y,...} =
Arithmetic expressions AFEzp a
Boolean expressions BExp b
Commands (statements) Cmd c

Rm Semantics and Verification of Software Winter semester 2008/09

Syntax of WHILE Programs

Definition (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a:=z|x|ai+as | ai-as | aj*as € AExp
b 5= 1 | ar=ag | a1>ag | —b | by A by | b1 V by € BExp
cu=skip|x :=a|cy;co | if b then ¢; else ¢ | while b do ¢ € Cmd

v

Remarks: we assume that

o the syntax of numbers, truth values and variables is given
(i.e., no “lexical analysis”)

@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

m Semantics and Verification of Software Winter semester 2008/09 4

© Operational Semantics of WHILE

Rm Semantics and Verification of Software ter semester 2008

Operational Semantics of WHILE

o Idea: define meaning of programs by specifying its behaviour
being executed on an (abstract) machine

@ Here: evaluation/execution relation for program fragments
(expressions, statements)

@ Approach based on Structural Operational Semantics (SOS)

G.D. Plotkin: A structural approach to operational
semantics, DAIMI FN-19, Computer Science
Department, Aarhus University, 1981

o Employs derivation rules of the form

Premise(s)
Name————
Conclusion

e meaning: if every premise is fulfilled, then conclusion can be drawn
e a rule with no premises is called an axiom

@ Derivation rules can be composed to form derivation trees with
axioms as leafs (formal definition later)

Rm Semantics and Verification of Software Winter semester 2008/09 6

© Evaluation of Arithmetic Expressions

Rm Semantics and Verification of Software ter semester 2008

Program States

@ Meaning of expression = value (in the usual sense)

@ Depends on the values of the variables in the expression

Definition 2.1 (Program state)

A (program) state is an element of the set
Y:={o|o: Var — Z},

called the state space.

Thus o(z) denotes the value of x € Var in state o € X.

m' Semantics and Verification of Software Winter semester 2008/09

Evaluation of Arithmetic Expressions I

Remember: a ::= z | x | a1+as | ay-as | ayxas € AExp

Definition 2.2 (Evaluation relation for arithmetic expressions)

If a € AEzp and o € X, then (a, o) is called a configuration.

Expression a evaluates to z € Z in state o (notation: (a,0) — z) if this
relationship is derivable by means of the following rules:

Axioms: o) > 2 o) = o(@)

(a1,0) — z1 (ag,0) — 22

Rules: where z := z1 + 29

ay+ag, o) — 2

ai,0 z1 {ag, o0 z
01,0) > 21 (a2,0) = 2 where z := 21 — 29

— 21 {ag,0) — 29
where z := z1 * 29

(
)
(a1-ag,0) — z
)
(

ar*az, o) — z

m' Semantics and Verification of Software Winter semester 2008/09

Evaluation of Arithmetic Expressions 11

Example 2.3
a= (x+3)*(y-2), o(x) =3, o(y) =9

(3,0) — 3

(x,0) =3 (y,0)

— 9

(2,0) — 2

<y_27 U> -7

((x+3)*(y-2),0) — 42

(a1,0) — 21 (ag,0) — 22

(ar*ag,0) — z

where z := z1%29

(a1,0) — z1 (ag,0) — 2o

(ar1+ag, o) — z

Here: structure of derivation tree = structure of program fragment

(generally not the case)

Semantics and Verification of Software

Winter semester 2008/09

10

Free Variables

First formal result: value of an expression only depends on valuation of
variables which occur in the expression

Definition 2.4 (Free variables)

The set of free variables of an expression is given by the function
FV : AExp — 2V

where

=0 FV
FV(z) := {z} FV(ai-a2) := FV(a1) U FV(a2)
FV(ai*ag) := FV

Result will be shown by structural induction on the expression

m Semantics and Verification of Software Winter semester 2008/09

@ Excursus: Proof by Structural Induction

Rm Semantics and Verification of Software ter semester 2008

Excursus: Proof by Structural Induction I

Proof principle

Given: an inductive set, i.e., a set S
@ which contains certain atomic elements and
@ which is closed under certain operations
To show: property P(s) applies to every s € S
Proof: we verify:

Induction base: P(s) holds for every atomic element s

Induction hypothesis: assume that P(s;), P(s2) etc.

Induction step: then also P(f(s1,...,ss)) holds for every
operation f of arity n

Semantics and Verification of Software Winter semester 2008/09 13

Excursus: Proof by Structural Induction II

Application: natural numbers (“complete induction”)
Definition: N is the least set which

@ contains 0 and
o contains n + 1 whenever n € N

Induction base: P(0) holds
Induction hypothesis: P(n) holds
Induction step: P(n + 1) holds

m' Semantics and Verification of Software Winter semester 2008/09

Complete-Induction Example

Example 2.5

We prove that P(n): > " i= % holds for every n € N.

P(0) holds: Y°9_;i=0=2G1

A SSE P(n): Z?:ll = n(n2+1)

Show P(n+1): Yl i= Y0 i+ (n+1)
_ 71/(71/2—"-1) + (n+ 1)
_ n(ntl) + 2(n+1)
_ (n—E2)(n+1)
(n+1)2((n+1)+1)

=2

m Semantics and Verification of Software Winter semester 2008/09 15

Excursus: Proof by Structural Induction ITI

Application: arithmetic expressions (Def. 1.2)
Definition: AFEzp is the least set which
@ contains all integers z € Z and all variables z € Var
and
@ contains aj+as, a;—as and aj*as whenever
ai,as € AExp
Induction base: P(z) and P(zx) holds (for every z € Z and z € Var)
Induction hypothesis: P(a;) and P(ag) holds
Induction step: P(aj+ag), P(ai-az) and P(aj*a2) holds

m Semantics and Verification of Software Winter semester 2008/09 16

Free Variables 11

Let a € AEzp and 0,0’ € ¥ such that o(z) = o' (x) for every
x € FV(a). Then, for every z € Z,

(a,0) = z < (a,0) — 2.

by structural induction on a (on the board)

Semantics and Verification of Software Winter semester 2008/09 17

@ Evaluation of Boolean Expressions

Rm Semantics and Verification of Software ter semester 2008

Evaluation of Boolean Expressions I

Remember: b::=1 | aij=as | a1>as | =b | by Abs | b1 V by € BExp

Definition 2.7 (Evaluation relation for Boolean expressions)

For b € BExp and o € ¥, and ¢ € B, the evaluation relation (b, o) — ¢t is
defined by the following rules:
(t,o) =t
(a1,0) — z (az,0) — z (a1,0) = z1 {ag,0) — 23 if 2, #
i
(a1=ag,0) — true (a1=ag, 0) — false a7
(a1,0) — 21 (az,0) — 22 | (a1,0) — 21 {(a2,0) — 22 |
if 21 > 29 if 21 < 29
(a1>ag,0) — true (a1>az,0) — false
(b, o) — false (b, o) — true
(=b, o) — true (—b, o) — false
(b1,0) — true (ba,0) — true (b1,0) — true (be, o) — false
(b1 A ba, o) — true (b1 A by, o) — false
(b1,0) — false (ba, o) — true (b1,0) — false (ba, o) — false
(b1 A ba, o) — false (b1 A by, o) — false
(V analogously)

m Semantics and Verification of Software Winter semester 2008/09 19

Evaluation of Boolean Expressions II

Remarks:

@ Binary Boolean operators A and V are interpreted as strict, i.e.,
always evaluate both arguments.

Important in situations like
while p <> nil and p~.key < val do ...!

(see 1st exercise sheet for non-strict evaluation)
o FV : BExp — 2" can be defined in analogy to Def. 2.4.

o Lemma 2.6 holds analogously for Boolean expressions, i.e., the
value of b € BEzp does not depend on variables in Var \ FV (b).

Rm Semantics and Verification of Software Winter semester 2008/09

© Execution of Statements

Rm Semantics and Verification of Software ter semester 2008

Meaning of Statements

Effect of statement = transformation of program state

Example:
(x 1= 2+3,0) — o[x — 5]

where for every 0 € ¥, z,y € Var, and 2z € Z:

ole = 2(y) = {z ify=ux

o(y) otherwise

Rm Semantics and Verification of Software Winter semester 2008/09

Execution of Statements

Remember:
cu=skip|x :=a|cj;co | 1f b then ¢; else ¢p | while b do ¢ € Omd

Definition 2.8 (Execution relation for statements)

For ¢ € Cmd and 0,0’ € ¥, the execution relation (c,0) — ¢’ is defined
by the following rules:

(skip) 7————— (asgn) \a,0) = =
(skip,0) — 0o (x :=a,0) — o[z 2]
(s03) (c1,0) = 0’ {cg,0") — 0" (i) (b,0) — true (c1,0) — o’
cr;ca,0) — o if b then ¢ else ¢o,0) — o’
() / ()
- (b,0) — false (c3,0) — o o (b, o) — false
if- - wh-

(if b then ¢ else ¢3,0) — 0 (while bdo ¢,0) — 0

(b,0) — true (c,c) — o’ (while bdo ¢,0’) — o”

(wh-t)

(while b do ¢,0) — o”

m' Semantics and Verification of Software Winter semester 2008/09 23

	Repetition: Syntax of WHILE
	Operational Semantics of WHILE
	Evaluation of Arithmetic Expressions
	Excursus: Proof by Structural Induction
	Evaluation of Boolean Expressions
	Execution of Statements

