
Semantics and Verification of Software

Lecture 3: Operational Semantics of WHILE II
(Execution of Statements)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Repetition: Evaluation and Execution Relations

2 Execution Examples

3 Determinism of Evaluation/Execution

Semantics and Verification of Software Winter semester 2008/09 2

Evaluation of Arithmetic Expressions

Remember: a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

Definition (Evaluation relation for arithmetic expressions)

If a ∈ AExp and σ ∈ Σ, then 〈a, σ〉 is called a configuration.

Expression a evaluates to z ∈ Z in state σ (notation: 〈a, σ〉 → z) if this
relationship is derivable by means of the following rules:

Axioms:
〈z, σ〉 → z 〈x, σ〉 → σ(x)

Rules:
〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where z := z1 + z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1-a2, σ〉 → z
where z := z1 − z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1 ∗ z2

Semantics and Verification of Software Winter semester 2008/09 3

Evaluation of Boolean Expressions

Remember: b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

Definition (Evaluation relation for Boolean expressions)

For b ∈ BExp and σ ∈ Σ, and t ∈ B, the evaluation relation 〈b, σ〉 → t is
defined by the following rules:

〈t, σ〉 → t

〈a1, σ〉 → z 〈a2, σ〉 → z

〈a1=a2, σ〉 → true

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1=a2, σ〉 → false
if z1 6= z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → true
if z1 > z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → false
if z1 ≤ z2

〈b, σ〉 → false

〈¬b, σ〉 → true

〈b, σ〉 → true

〈¬b, σ〉 → false

〈b1, σ〉 → true 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → true

〈b1, σ〉 → true 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → false 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → false 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false

(∨ analogously)

Semantics and Verification of Software Winter semester 2008/09 4

Execution of Statements

Remember:
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Definition (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined
by the following rules:

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c, σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Semantics and Verification of Software Winter semester 2008/09 5

Outline

1 Repetition: Evaluation and Execution Relations

2 Execution Examples

3 Determinism of Evaluation/Execution

Semantics and Verification of Software Winter semester 2008/09 6

An Execution Example

Example 3.1

c := y := 1; while¬(x=1)
︸ ︷︷ ︸

b

doy := y*x
︸ ︷︷ ︸

c1

; x := x-1
︸ ︷︷ ︸

c2
︸ ︷︷ ︸

c0

Claim: 〈c, σ〉 → σ1,6 for every σ ∈ Σ with σ(x) = 3

Notation: σi,j means σ(x) = i, σ(y) = j

Derivation tree: on the board

Semantics and Verification of Software Winter semester 2008/09 7

Non-Terminating Statements

Corollary 3.2

The execution relation for statements is not total, i.e., there exist

c ∈ Cmd and σ ∈ Σ such that 〈c, σ〉 → σ′ for no σ′ ∈ Σ.

Semantics and Verification of Software Winter semester 2008/09 8

Non-Terminating Statements

Corollary 3.2

The execution relation for statements is not total, i.e., there exist

c ∈ Cmd and σ ∈ Σ such that 〈c, σ〉 → σ′ for no σ′ ∈ Σ.

Proof.

Counterexample: c = while true do skip

(by contradiction; on the board)

Semantics and Verification of Software Winter semester 2008/09 8

Outline

1 Repetition: Evaluation and Execution Relations

2 Execution Examples

3 Determinism of Evaluation/Execution

Semantics and Verification of Software Winter semester 2008/09 9

Determinism of Execution Relation I

This operational semantics is well defined in the following sense:

Theorem 3.3

The execution relation for statements is deterministic, i.e., whenever

c ∈ Cmd and σ, σ′, σ′′ ∈ Σ such that 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′, then

σ′ = σ′′.

Semantics and Verification of Software Winter semester 2008/09 10

Determinism of Execution Relation I

This operational semantics is well defined in the following sense:

Theorem 3.3

The execution relation for statements is deterministic, i.e., whenever

c ∈ Cmd and σ, σ′, σ′′ ∈ Σ such that 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′, then

σ′ = σ′′.

The proof is based on the corresponding result for expressions.

Semantics and Verification of Software Winter semester 2008/09 10

Determinism of Evaluation Relations

Lemma 3.4
1 For every a ∈ AExp, σ ∈ Σ, and z, z′ ∈ Z:

〈a, σ〉 → z and 〈a, σ〉 → z′ implies z = z′.

2 For every b ∈ BExp, σ ∈ Σ, and t, t′ ∈ B:

〈b, σ〉 → t and 〈b, σ〉 → t′ implies t = t′.

Semantics and Verification of Software Winter semester 2008/09 11

Determinism of Evaluation Relations

Lemma 3.4
1 For every a ∈ AExp, σ ∈ Σ, and z, z′ ∈ Z:

〈a, σ〉 → z and 〈a, σ〉 → z′ implies z = z′.

2 For every b ∈ BExp, σ ∈ Σ, and t, t′ ∈ B:

〈b, σ〉 → t and 〈b, σ〉 → t′ implies t = t′.

Remarks:

Lemma 3.4 is not implied by Lemma 2.6
(“σ|FV (a) = σ′|FV (a) =⇒ (〈a, σ〉 → z ⇐⇒ 〈a, σ′〉 → z)”)!

The latter just implies
{z ∈ Z | 〈a, σ〉 → z} = {z ∈ Z | 〈a, σ′〉 → z}

while Lemma 3.4 states that
|{z ∈ Z | 〈a, σ〉 → z}| ≤ 1.

Lemma 3.4 can be shown by induction on the structure of
expressions.

Semantics and Verification of Software Winter semester 2008/09 11

Excursus: Proof by Structural Induction IV

Application: Boolean expressions (Def. 1.2)

Definition: BExp is the least set which

contains the truth values t ∈ B and, for every
a1, a2 ∈ AExp, a1=a2 and a1>a2, and
contains ¬b1, b1 ∧ b2 and b1 ∨ b2 whenever
b1, b2 ∈ BExp

Induction base: P (t), P (a1=a2) and P (a1>a2) holds
(for every t ∈ B, a1, a2 ∈ AExp)

Induction hypothesis: P (b1) and P (b2) holds

Induction step: P (¬b1), P (b1 ∧ b2) and P (b1 ∨ b2) holds

Semantics and Verification of Software Winter semester 2008/09 12

Excursus: Proof by Structural Induction IV

Application: Boolean expressions (Def. 1.2)

Definition: BExp is the least set which

contains the truth values t ∈ B and, for every
a1, a2 ∈ AExp, a1=a2 and a1>a2, and
contains ¬b1, b1 ∧ b2 and b1 ∨ b2 whenever
b1, b2 ∈ BExp

Induction base: P (t), P (a1=a2) and P (a1>a2) holds
(for every t ∈ B, a1, a2 ∈ AExp)

Induction hypothesis: P (b1) and P (b2) holds

Induction step: P (¬b1), P (b1 ∧ b2) and P (b1 ∨ b2) holds

Proof (Lemma 3.4).

1 by structural induction on a (omitted)
2 by structural induction on b (omitted)

Semantics and Verification of Software Winter semester 2008/09 12

Determinism of Execution Relation II

How to prove that 〈c, σ〉 → σ′ is deterministic (Theorem 3.3)?

Idea: use induction on the syntactic structure of c

Semantics and Verification of Software Winter semester 2008/09 13

Excursus: Proof by Structural Induction V

Application: syntax of WHILE statements (Def. 1.2)

Definition: Cmd is the least set which

contains skip and, for every x ∈ Var and a ∈ AExp,
x := a, and
contains c1;c2, if b then c1 else c2 and
while b do c1 whenever b ∈ BExp and c1, c2 ∈ Cmd

Induction base: P (skip) and P (x := a) holds
(for every x ∈ Var and a ∈ AExp)

Induction hypothesis: P (c1) and P (c2) holds

Induction step: P (c1;c2), P (if b then c1 else c2) and
P (while b do c1) holds

Semantics and Verification of Software Winter semester 2008/09 14

Determinism of Execution Relation III

Remark:

But: proof of Theorem 3.3 fails!

Semantics and Verification of Software Winter semester 2008/09 15

Determinism of Execution Relation III

Remark:

But: proof of Theorem 3.3 fails!

Problematic case:

c = while b do c0 where 〈b, σ〉 → true

Semantics and Verification of Software Winter semester 2008/09 15

Determinism of Execution Relation III

Remark:

But: proof of Theorem 3.3 fails!

Problematic case:

c = while b do c0 where 〈b, σ〉 → true

Here 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′ require σ1, σ2 ∈ Σ such that

(wh-t)
〈b, σ〉 → true 〈c0, σ〉 → σ1 〈c, σ1〉 → σ′

〈c, σ〉 → σ′

and

(wh-t)
〈b, σ〉 → true 〈c0, σ〉 → σ2 〈c, σ2〉 → σ′′

〈c, σ〉 → σ′′

Semantics and Verification of Software Winter semester 2008/09 15

Determinism of Execution Relation III

Remark:

But: proof of Theorem 3.3 fails!

Problematic case:

c = while b do c0 where 〈b, σ〉 → true

Here 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′ require σ1, σ2 ∈ Σ such that

(wh-t)
〈b, σ〉 → true 〈c0, σ〉 → σ1 〈c, σ1〉 → σ′

〈c, σ〉 → σ′

and

(wh-t)
〈b, σ〉 → true 〈c0, σ〉 → σ2 〈c, σ2〉 → σ′′

〈c, σ〉 → σ′′

c0 proper substatement of c

=⇒ induction hypothesis yields σ1 = σ2

Semantics and Verification of Software Winter semester 2008/09 15

Determinism of Execution Relation III

Remark:

But: proof of Theorem 3.3 fails!

Problematic case:

c = while b do c0 where 〈b, σ〉 → true

Here 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′ require σ1, σ2 ∈ Σ such that

(wh-t)
〈b, σ〉 → true 〈c0, σ〉 → σ1 〈c, σ1〉 → σ′

〈c, σ〉 → σ′

and

(wh-t)
〈b, σ〉 → true 〈c0, σ〉 → σ2 〈c, σ2〉 → σ′′

〈c, σ〉 → σ′′

c0 proper substatement of c

=⇒ induction hypothesis yields σ1 = σ2

c not proper substatement of c =⇒ conclusion σ′ = σ′′ invalid!

Semantics and Verification of Software Winter semester 2008/09 15

Excursus: Proof by Structural Induction VI

Application: derivation trees of execution relation (Def. 2.8)

(skip): for every σ ∈ Σ,
〈skip, σ〉 → σ

is a derivation tree for 〈skip, σ〉 → σ

(asgn): if s is a derivation tree for 〈a, σ〉 → z (Def. 2.2), then
s

〈x := a, σ〉 → σ[x 7→ z]
is a derivation tree for 〈x := a, σ〉 → σ[x 7→ z]

(seq): if s1 and s2 are derivation trees for 〈c1, σ〉 → σ′ and, respectively,

〈c2, σ′〉 → σ′′, then
s1 s2

〈c1;c2, σ〉 → σ′′
is a derivation tree for

〈c1;c2, σ〉 → σ′′

(if-t): if s1 and s2 are derivation trees for 〈b, σ〉 → true (Def. 2.7) and,

respectively, 〈c1, σ〉 → σ′, then
s1 s2

〈if b then c1 else c2, σ〉 → σ′
is a

derivation tree for 〈if b then c1 else c2, σ〉 → σ′

(if-f): analogously
(wh-t): if s1, s2 and s3 are derivation trees for 〈b, σ〉 → true (Def. 2.7), 〈c, σ〉 → σ′

and 〈while b do c, σ′〉 → σ′′, respectively, then
s1 s2 s3

〈while b do c, σ〉 → σ′′
is

a derivation tree for 〈while b do c, σ〉 → σ′′

(wh-f): if s is a derivation tree for 〈b, σ〉 → false (Def. 2.7), then
s

〈while b do c, σ〉 → σ
is a derivation tree for 〈while b do c, σ〉 → σ

Semantics and Verification of Software Winter semester 2008/09 16

Excursus: Proof by Structural Induction VII

Application: derivation trees of execution relation (continued)

Induction base: P

„

〈skip, σ〉 → σ

«

holds for every σ ∈ Σ, and P (s) holds for

every derivation tree s for an arithmetic or Boolean expression.

Induction hypothesis: P (s1), P (s2) und P (s3) holds.

Induction step: it also holds that

(asgn): P

„

s1

〈x:=a, σ〉 → σ[x 7→ z]

«

(seq): P

„

s1 s2

〈c1;c2, σ〉 → σ′′

«

(if-t): P

„

s1 s2

〈if b then c1 else c2, σ〉 → σ′

«

(if-f): analogously

(wh-t): P

„

s1 s2 s3

〈while b do c, σ〉 → σ′′

«

(wh-f): P

„

s1

〈while b do c, σ〉 → σ

«

Semantics and Verification of Software Winter semester 2008/09 17

Determinism of Execution Relation IV

Proof (Theorem 3.3).

To show:
〈c, σ〉 → σ′, 〈c, σ〉 → σ′′ =⇒ σ′ = σ′′

(by structural induction on derivation trees; on the board)

Semantics and Verification of Software Winter semester 2008/09 18

	Repetition: Evaluation and Execution Relations
	Execution Examples
	Determinism of Evaluation/Execution

