

Semantics and Verification of Software

Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw08/>

Winter semester 2008/09

- 1 Repetition: Evaluation and Execution Relations
- 2 Execution Examples
- 3 Determinism of Evaluation/Execution

Evaluation of Arithmetic Expressions

Remember: $a ::= z \mid x \mid a_1+a_2 \mid a_1-a_2 \mid a_1*a_2 \in AExp$

Definition (Evaluation relation for arithmetic expressions)

If $a \in AExp$ and $\sigma \in \Sigma$, then $\langle a, \sigma \rangle$ is called a **configuration**.

Expression a **evaluates to** $z \in \mathbb{Z}$ in state σ (notation: $\langle a, \sigma \rangle \rightarrow z$) if this relationship is derivable by means of the following rules:

Axioms: $\frac{}{\langle z, \sigma \rangle \rightarrow z} \quad \frac{}{\langle x, \sigma \rangle \rightarrow \sigma(x)}$

Rules: $\frac{\langle a_1, \sigma \rangle \rightarrow z_1 \quad \langle a_2, \sigma \rangle \rightarrow z_2}{\langle a_1+a_2, \sigma \rangle \rightarrow z} \quad \text{where } z := z_1 + z_2$

$$\frac{\langle a_1, \sigma \rangle \rightarrow z_1 \quad \langle a_2, \sigma \rangle \rightarrow z_2}{\langle a_1-a_2, \sigma \rangle \rightarrow z} \quad \text{where } z := z_1 - z_2$$
$$\frac{\langle a_1, \sigma \rangle \rightarrow z_1 \quad \langle a_2, \sigma \rangle \rightarrow z_2}{\langle a_1*a_2, \sigma \rangle \rightarrow z} \quad \text{where } z := z_1 * z_2$$

Evaluation of Boolean Expressions

Remember: $b ::= t \mid a_1=a_2 \mid a_1>a_2 \mid \neg b \mid b_1 \wedge b_2 \mid b_1 \vee b_2 \in BExp$

Definition (Evaluation relation for Boolean expressions)

For $b \in BExp$ and $\sigma \in \Sigma$, and $t \in \mathbb{B}$, the **evaluation relation** $\langle b, \sigma \rangle \rightarrow t$ is defined by the following rules:

Remember:

$c ::= \text{skip} \mid x := a \mid c_1 ; c_2 \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c \in Cmd$

Definition (Execution relation for statements)

For $c \in Cmd$ and $\sigma, \sigma' \in \Sigma$, the **execution relation** $\langle c, \sigma \rangle \rightarrow \sigma'$ is defined by the following rules:

$$\begin{array}{c} (\text{skip}) \frac{}{\langle \text{skip}, \sigma \rangle \rightarrow \sigma} \qquad \qquad \qquad (\text{asgn}) \frac{\langle a, \sigma \rangle \rightarrow z}{\langle x := a, \sigma \rangle \rightarrow \sigma[x \mapsto z]} \\ (\text{seq}) \frac{\langle c_1, \sigma \rangle \rightarrow \sigma' \quad \langle c_2, \sigma' \rangle \rightarrow \sigma''}{\langle c_1 ; c_2, \sigma \rangle \rightarrow \sigma''} \qquad \qquad \qquad (\text{if-t}) \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c_1, \sigma \rangle \rightarrow \sigma'}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'} \\ (\text{if-f}) \frac{\langle b, \sigma \rangle \rightarrow \text{false} \quad \langle c_2, \sigma \rangle \rightarrow \sigma'}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'} \qquad \qquad \qquad (\text{wh-f}) \frac{\langle b, \sigma \rangle \rightarrow \text{false}}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma} \\ (\text{wh-t}) \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c, \sigma \rangle \rightarrow \sigma' \quad \langle \text{while } b \text{ do } c, \sigma' \rangle \rightarrow \sigma''}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma''} \end{array}$$

- 1 Repetition: Evaluation and Execution Relations
- 2 Execution Examples
- 3 Determinism of Evaluation/Execution

Example 3.1

- $c := y := 1; \text{while } \underbrace{\neg(x=1)}_b \text{ do } \underbrace{y := y*x}_{c_1}; \underbrace{x := x-1}_{c_2}$
$$\qquad\qquad\qquad \underbrace{\qquad\qquad\qquad}_{c_0}$$
- Claim: $\langle c, \sigma \rangle \rightarrow \sigma_{1,6}$ for every $\sigma \in \Sigma$ with $\sigma(x) = 3$
- Notation: $\sigma_{i,j}$ means $\sigma(x) = i, \sigma(y) = j$
- Derivation tree: on the board

Corollary 3.2

*The execution relation for statements is not **total**, i.e., there exist $c \in Cmd$ and $\sigma \in \Sigma$ such that $\langle c, \sigma \rangle \rightarrow \sigma'$ for no $\sigma' \in \Sigma$.*

Corollary 3.2

*The execution relation for statements is not **total**, i.e., there exist $c \in Cmd$ and $\sigma \in \Sigma$ such that $\langle c, \sigma \rangle \rightarrow \sigma'$ for no $\sigma' \in \Sigma$.*

Proof.

Counterexample: $c = \text{while true do skip}$
(by contradiction; on the board) □

- 1 Repetition: Evaluation and Execution Relations
- 2 Execution Examples
- 3 Determinism of Evaluation/Execution

This operational semantics is well defined in the following sense:

Theorem 3.3

*The execution relation for statements is **deterministic**, i.e., whenever $c \in Cmd$ and $\sigma, \sigma', \sigma'' \in \Sigma$ such that $\langle c, \sigma \rangle \rightarrow \sigma'$ and $\langle c, \sigma \rangle \rightarrow \sigma''$, then $\sigma' = \sigma''$.*

This operational semantics is well defined in the following sense:

Theorem 3.3

*The execution relation for statements is **deterministic**, i.e., whenever $c \in Cmd$ and $\sigma, \sigma', \sigma'' \in \Sigma$ such that $\langle c, \sigma \rangle \rightarrow \sigma'$ and $\langle c, \sigma \rangle \rightarrow \sigma''$, then $\sigma' = \sigma''$.*

The proof is based on the corresponding result for expressions.

Lemma 3.4

- ① For every $a \in AExp$, $\sigma \in \Sigma$, and $z, z' \in \mathbb{Z}$:
 $\langle a, \sigma \rangle \rightarrow z$ and $\langle a, \sigma \rangle \rightarrow z'$ implies $z = z'$.
- ② For every $b \in BExp$, $\sigma \in \Sigma$, and $t, t' \in \mathbb{B}$:
 $\langle b, \sigma \rangle \rightarrow t$ and $\langle b, \sigma \rangle \rightarrow t'$ implies $t = t'$.

Lemma 3.4

- ① For every $a \in AExp$, $\sigma \in \Sigma$, and $z, z' \in \mathbb{Z}$:
 $\langle a, \sigma \rangle \rightarrow z$ and $\langle a, \sigma \rangle \rightarrow z'$ implies $z = z'$.
- ② For every $b \in BExp$, $\sigma \in \Sigma$, and $t, t' \in \mathbb{B}$:
 $\langle b, \sigma \rangle \rightarrow t$ and $\langle b, \sigma \rangle \rightarrow t'$ implies $t = t'$.

Remarks:

- Lemma 3.4 is **not** implied by Lemma 2.6
(“ $\sigma|_{FV(a)} = \sigma'|_{FV(a)} \implies (\langle a, \sigma \rangle \rightarrow z \iff \langle a, \sigma' \rangle \rightarrow z)$ ”)

The latter just implies

$$\{z \in \mathbb{Z} \mid \langle a, \sigma \rangle \rightarrow z\} = \{z \in \mathbb{Z} \mid \langle a, \sigma' \rangle \rightarrow z\}$$

while Lemma 3.4 states that

$$|\{z \in \mathbb{Z} \mid \langle a, \sigma \rangle \rightarrow z\}| \leq 1.$$

- Lemma 3.4 can be shown by **induction on the structure of expressions**.

Application: Boolean expressions (Def. 1.2)

Definition: $BExp$ is the least set which

- contains the truth values $t \in \mathbb{B}$ and, for every $a_1, a_2 \in AExp$, $a_1 = a_2$ and $a_1 > a_2$, and
- contains $\neg b_1$, $b_1 \wedge b_2$ and $b_1 \vee b_2$ whenever $b_1, b_2 \in BExp$

Induction base: $P(t)$, $P(a_1 = a_2)$ and $P(a_1 > a_2)$ holds
(for every $t \in \mathbb{B}$, $a_1, a_2 \in AExp$)

Induction hypothesis: $P(b_1)$ and $P(b_2)$ holds

Induction step: $P(\neg b_1)$, $P(b_1 \wedge b_2)$ and $P(b_1 \vee b_2)$ holds

Application: Boolean expressions (Def. 1.2)

Definition: $BExp$ is the least set which

- contains the truth values $t \in \mathbb{B}$ and, for every $a_1, a_2 \in AExp$, $a_1 = a_2$ and $a_1 > a_2$, and
- contains $\neg b_1$, $b_1 \wedge b_2$ and $b_1 \vee b_2$ whenever $b_1, b_2 \in BExp$

Induction base: $P(t)$, $P(a_1 = a_2)$ and $P(a_1 > a_2)$ holds

(for every $t \in \mathbb{B}$, $a_1, a_2 \in AExp$)

Induction hypothesis: $P(b_1)$ and $P(b_2)$ holds

Induction step: $P(\neg b_1)$, $P(b_1 \wedge b_2)$ and $P(b_1 \vee b_2)$ holds

Proof (Lemma 3.4).

- ① by structural induction on a (omitted)
- ② by structural induction on b (omitted)

- How to prove that $\langle c, \sigma \rangle \rightarrow \sigma'$ is deterministic (Theorem 3.3)?
- Idea: use **induction on the syntactic structure** of c

Application: syntax of WHILE statements (Def. 1.2)

Definition: Cmd is the least set which

- contains `skip` and, for every $x \in Var$ and $a \in AExp$,
 $x := a$, and
- contains $c_1; c_2$, `if` b `then` c_1 `else` c_2 and
`while` b `do` c_1 whenever $b \in BExp$ and $c_1, c_2 \in Cmd$

Induction base: $P(\text{skip})$ and $P(x := a)$ holds
(for every $x \in Var$ and $a \in AExp$)

Induction hypothesis: $P(c_1)$ and $P(c_2)$ holds

Induction step: $P(c_1; c_2)$, $P(\text{if } b \text{ then } c_1 \text{ else } c_2)$ and
 $P(\text{while } b \text{ do } c_1)$ holds

Remark:

- But: proof of Theorem 3.3 fails!

Remark:

- But: proof of Theorem 3.3 fails!
- Problematic case:

$$c = \text{while } b \text{ do } c_0 \text{ where } \langle b, \sigma \rangle \rightarrow \text{true}$$

Remark:

- But: proof of Theorem 3.3 fails!
- Problematic case:

$c = \text{while } b \text{ do } c_0$ where $\langle b, \sigma \rangle \rightarrow \text{true}$

- Here $\langle c, \sigma \rangle \rightarrow \sigma'$ and $\langle c, \sigma \rangle \rightarrow \sigma''$ require $\sigma_1, \sigma_2 \in \Sigma$ such that

$$\text{(wh-t)} \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c_0, \sigma \rangle \rightarrow \sigma_1 \quad \langle c, \sigma_1 \rangle \rightarrow \sigma'}{\langle c, \sigma \rangle \rightarrow \sigma'}$$

and

$$\text{(wh-t)} \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c_0, \sigma \rangle \rightarrow \sigma_2 \quad \langle c, \sigma_2 \rangle \rightarrow \sigma''}{\langle c, \sigma \rangle \rightarrow \sigma''}$$

Remark:

- But: proof of Theorem 3.3 fails!
- Problematic case:

$c = \text{while } b \text{ do } c_0$ where $\langle b, \sigma \rangle \rightarrow \text{true}$

- Here $\langle c, \sigma \rangle \rightarrow \sigma'$ and $\langle c, \sigma \rangle \rightarrow \sigma''$ require $\sigma_1, \sigma_2 \in \Sigma$ such that

$$\text{(wh-t)} \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c_0, \sigma \rangle \rightarrow \sigma_1 \quad \langle c, \sigma_1 \rangle \rightarrow \sigma'}{\langle c, \sigma \rangle \rightarrow \sigma'}$$

and

$$\text{(wh-t)} \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c_0, \sigma \rangle \rightarrow \sigma_2 \quad \langle c, \sigma_2 \rangle \rightarrow \sigma''}{\langle c, \sigma \rangle \rightarrow \sigma''}$$

- c_0 proper substatement of c
 \implies induction hypothesis yields $\sigma_1 = \sigma_2$

Remark:

- But: proof of Theorem 3.3 fails!
- Problematic case:

$c = \text{while } b \text{ do } c_0$ where $\langle b, \sigma \rangle \rightarrow \text{true}$

- Here $\langle c, \sigma \rangle \rightarrow \sigma'$ and $\langle c, \sigma \rangle \rightarrow \sigma''$ require $\sigma_1, \sigma_2 \in \Sigma$ such that

$$\text{(wh-t)} \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c_0, \sigma \rangle \rightarrow \sigma_1 \quad \langle c, \sigma_1 \rangle \rightarrow \sigma'}{\langle c, \sigma \rangle \rightarrow \sigma'}$$

and

$$\text{(wh-t)} \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c_0, \sigma \rangle \rightarrow \sigma_2 \quad \langle c, \sigma_2 \rangle \rightarrow \sigma''}{\langle c, \sigma \rangle \rightarrow \sigma''}$$

- c_0 proper substatement of c
 \implies induction hypothesis yields $\sigma_1 = \sigma_2$
- c not proper substatement of $c \implies$ conclusion $\sigma' = \sigma''$ invalid!

Application: derivation trees of execution relation (Def. 2.8)

(skip): for every $\sigma \in \Sigma$, $\frac{}{\langle \text{skip}, \sigma \rangle \rightarrow \sigma}$ is a derivation tree for $\langle \text{skip}, \sigma \rangle \rightarrow \sigma$

(asgn): if s is a derivation tree for $\langle a, \sigma \rangle \rightarrow z$ (Def. 2.2), then

$\frac{s}{\langle x := a, \sigma \rangle \rightarrow \sigma[x \mapsto z]}$ is a derivation tree for $\langle x := a, \sigma \rangle \rightarrow \sigma[x \mapsto z]$

(seq): if s_1 and s_2 are derivation trees for $\langle c_1, \sigma \rangle \rightarrow \sigma'$ and, respectively, $\langle c_2, \sigma' \rangle \rightarrow \sigma''$, then $\frac{s_1 \ s_2}{\langle c_1 ; c_2, \sigma \rangle \rightarrow \sigma''}$ is a derivation tree for $\langle c_1 ; c_2, \sigma \rangle \rightarrow \sigma''$

(if-t): if s_1 and s_2 are derivation trees for $\langle b, \sigma \rangle \rightarrow \text{true}$ (Def. 2.7) and, respectively, $\langle c_1, \sigma \rangle \rightarrow \sigma'$, then $\frac{s_1 \ s_2}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'}$ is a derivation tree for $\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'$

(if-f): analogously

(wh-t): if s_1 , s_2 and s_3 are derivation trees for $\langle b, \sigma \rangle \rightarrow \text{true}$ (Def. 2.7), $\langle c, \sigma \rangle \rightarrow \sigma'$ and $\langle \text{while } b \text{ do } c, \sigma' \rangle \rightarrow \sigma''$, respectively, then $\frac{s_1 \ s_2 \ s_3}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma''}$ is a derivation tree for $\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma''$

(wh-f): if s is a derivation tree for $\langle b, \sigma \rangle \rightarrow \text{false}$ (Def. 2.7), then

$\frac{s}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma}$ is a derivation tree for $\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma$

Application: derivation trees of execution relation (continued)

Induction base: $P\left(\frac{}{\langle \text{skip}, \sigma \rangle \rightarrow \sigma}\right)$ holds for every $\sigma \in \Sigma$, and $P(s)$ holds for every derivation tree s for an arithmetic or Boolean expression.

Induction hypothesis: $P(s_1)$, $P(s_2)$ und $P(s_3)$ holds.

Induction step: it also holds that

$$(\text{asgn}): P\left(\frac{s_1}{\langle x := a, \sigma \rangle \rightarrow \sigma[x \mapsto z]}\right)$$

$$(\text{seq}): P\left(\frac{s_1 \ s_2}{\langle c_1; c_2, \sigma \rangle \rightarrow \sigma''}\right)$$

$$(\text{if-t}): P\left(\frac{s_1 \ s_2}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'}\right)$$

(if-f): analogously

$$(\text{wh-t}): P\left(\frac{s_1 \ s_2 \ s_3}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma''}\right)$$

$$(\text{wh-f}): P\left(\frac{s_1}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma}\right)$$

Proof (Theorem 3.3).

To show:

$$\langle c, \sigma \rangle \rightarrow \sigma', \langle c, \sigma \rangle \rightarrow \sigma'' \implies \sigma' = \sigma''$$

(by structural induction on derivation trees; on the board) □