Semantics and Verification of Software

Lecture 4: Operational and Denotational Semantics

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

© Repetition: Execution of Statements

Rm Semantics and Verification of Software ter semester 2008



Execution of Statements

Remember:
cu=skip|x :=a|cp;co | if b then ¢; else ¢p | while b do ¢ € Omd

Definition (Execution relation for statements)

For ¢ € Cmd and 0,0’ € ¥, the execution relation (c,0) — o' is defined
by the following rules:

(skip) 7————— (asgn) \a,0) = =
(skip,0) — o (x :=a,0) — o[z 2]
(s03) (c1,0) = 0’ {ca,0") — " (i) (b,0) — true {(c1,0) — o’
cr;ca,0) — o if b then ¢y else c3,0) — o’
( ) / ( )
.- (b,0) — false (ca,0) — o o (b, o) — false
if- - wh-

(if b then ¢ else ¢3,0) — 0 (while bdo ¢,0) — 0
(b,0) — true (c¢,0) — o’ (while bdo ¢,0’) — o”

(wh-t)

(while b do ¢,0) — o”
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Determinism of Execution Relation

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Omd and o,0',0" € ¥ such that (c,0) — o' and {(c,c) — ", then
/ !

o =dod".

by structural induction on derivation trees
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© Functional of the Operational Semantics
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Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.3) justifies the
following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (£ --» X),

assigns to every statement ¢ € C'md a partial state transformation
O[c] : ¥ --» X, which is defined as follows:

oo = {° if (¢,0) — o' for some o’/ € 2
€19 = | undefined otherwise
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Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.3) justifies the
following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (£ --» X),

assigns to every statement ¢ € C'md a partial state transformation
O[c] : ¥ --» X, which is defined as follows:

oo = o if (¢,0) — o' for some o’/ € 2
€19 = | undefined otherwise

Remark: O[c]o can indeed be undefined
(consider e.g. ¢ = while true do skip; see Corollary 3.2)
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Equivalence of Statements

Definition 4.2 (Operational equivalence)

Two statements c;,co € Cmd are called (operationally) equivalent
(notation: ¢; ~ cg) if

D[[Cl]] = D[[CQ]].
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Equivalence of Statements

Definition 4.2 (Operational equivalence)

Two statements c;,co € Cmd are called (operationally) equivalent
(notation: ¢; ~ cg) if

D[[Cl]] = D[[CQ]].

Thus:
0 ¢ ~ cg iff Ofcr]o = Ofez]o for every o € &
o In particular, Ofc;]o is undefined iff Ofca]o is undefined
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“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

For every b € BExp and c € Cmd,

while b do ¢ ~ if b then (c;while b do c¢) else skip.
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“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

For every b € BExp and c € Cmd,

while b do ¢ ~ if b then (c;while b do c¢) else skip.

on the board O
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Summary: Operational Semantics

o Formalized by evaluation/execution relations
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Summary: Operational Semantics

o Formalized by evaluation/execution relations

@ Inductively defined by derivation trees using structural operational
rules

@ Enables proofs about operational behaviour of programs using
structural induction

@ Semantic functional characterizes complete input/output
behaviour of programs
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@ The Denotational Approach
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Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output
behaviour
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Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output
behaviour

o In operational semantics: indirect definition of semantic functional
O[.] by execution relation

@ Now: abstract from operational details

o Denotational semanics: direct definition of program effect by
induction on its syntactic structure
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© Denotational Semantics of Expressions

Rm Semantics and Verification of Software ter semester 2008



Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 4.4 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,
A[.] : AExp — (¥ — Z),
is given by:
Alz]o = = Wlar+as]o := Ufai]o + Afaz]o

Wlz]o = o(z) Alar-as]o := Ufai]o — Afaz]o
Alar*az]o := Afai]o * Afaz]o
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Semantics of Boolean Expressions

Definition 4.5 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,
B[.] : BEzp — (X — B),
is given by:
Bft]o =t
Blar=as]o = ;E:IJSZ gtlglleﬂfvir]i]se: Alas]o
Blay>as]o = :;fsee gtl%leﬂfvi]l]; > Wlaz]o
T
R
Bby V bo]o := ,‘:";‘Lsee gﬂfﬂi = Bbe]o = false
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Semantics of Statements 1

@ Now: semantic functional

C[.]: Cmd — (£ --» %)
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Semantics of Statements 1

® Now: semantic functional
Cl.]: Cmd — (£ --+ %)
® Same type as operational functional
O[] : Cmd — (2 --+ %)
(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)
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Semantics of Statements 1

® Now: semantic functional
C[.]: Cmd — (£ --» %)
® Same type as operational functional
O[] : Cmd — (2 --+ %)
(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)
® Inductive definition employs auxiliary functions:
o identity on states: idy : X --+ X :0+— 0
o (strict) composition of partial state transformations:
0:(E-» ) x(E--2%)—> (X--%)
where, for every f,g: 3 --+» X and 0 € X,
(go f)(o) = {g(f(a)) if f(o) defined

undefined otherwise

o semantic conditional:
cond: (X —=>B)x (B--+X)x(Z--»%) = (Z--2%)
where, for every p: X — B, f,g: ¥ --+» ¥, and g € X,

cond(p, f, g)(0) := {f(a) if p(o) = true

g(o) otherwise
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Semantics of Statements 11

Definition 4.6 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

Cl.]: Cmd — (£ --» %),

is given by:
C[skip] := idy
Clz :=a]o = o[z — Aa]o]
Q:[[Cl;CQ]] = Q:[[Cg]] o Q:[[Cl]]

C[if b then ¢; else 3] :
¢[while b do (] :

cond(B[b], €[e1], €eca])
fix(®)

where @ : (X --» ¥) — (X --» X) : f+— cond(B[d], f o €[c],idx)
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Semantics of Statements 111

Remarks:
@ Definition of €[c] given by induction on syntactic structure of
ce Cmd

o in particular, €[while b do ] only refers to B[b] and €[c]
(and not to €Jwhile b do ] again)
o note difference to O[c]:

(b,0) — true {c,0) — ¢’ (while b do ¢,0’) — o

(wh-t)

(while b do ¢,0) — o
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Semantics of Statements 111

Remarks:
@ Definition of €[c] given by induction on syntactic structure of
ce Cmd

o in particular, €[while b do ] only refers to B[b] and €[c]
(and not to €Jwhile b do ] again)
o note difference to O[c]:

(b,0) — true (c,0) — ¢’ (while b do ¢,o’y — 0"

wh-t
(wh-t) (while b do ¢,0) — o

o In €fcy ;2] := €[ca] o €[e1], function composition o has to be
strict since non-termination of ¢; implies non-termination of ¢ ;co
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Semantics of Statements 111

Remarks:
@ Definition of €[c] given by induction on syntactic structure of
ce Cmd

o in particular, €[while b do ] only refers to B[b] and €[c]
(and not to €Jwhile b do ] again)
o note difference to O[c]:

(b,0) — true (c,0) — ¢’ (while b do ¢,o’y — 0"

h-t
(wh-t) (while b do ¢,0) — o
o In €fcy ;2] := €[ca] o €[e1], function composition o has to be
strict since non-termination of ¢; implies non-termination of ¢ ;co
o In ¢fwhile b do ] := fix(®), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”

But: why fixpoints?
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