Semantics and Verification of Software

Lecture 4: Operational and Denotational Semantics

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

© Repetition: Execution of Statements

Rm Semantics and Verification of Software ter semester 2008

Execution of Statements

Remember:
cu=skip|x :=a|cp;co | if b then ¢; else ¢p | while b do ¢ € Omd

Definition (Execution relation for statements)

For ¢ € Cmd and 0,0’ € ¥, the execution relation (c,0) — o' is defined
by the following rules:

(skip) 7————— (asgn) \a,0) = =
(skip,0) — o (x :=a,0) — o[z 2]
(s03) (c1,0) = 0’ {ca,0") — " (i) (b,0) — true {(c1,0) — o’
cr;ca,0) — o if b then ¢y else c3,0) — o’
() / ()
.- (b,0) — false (ca,0) — o o (b, o) — false
if- - wh-

(if b then ¢ else ¢3,0) — 0 (while bdo ¢,0) — 0
(b,0) — true (c¢,0) — o’ (while bdo ¢,0’) — o”

(wh-t)

(while b do ¢,0) — o”

m' Semantics and Verification of Software Winter semester 2008,/09

Determinism of Execution Relation

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Omd and o,0',0" € ¥ such that (c,0) — o' and {(c,c) — ", then
/ !

o =dod".

by structural induction on derivation trees

m' Semantics and Verification of Software Winter semester 2008,/09

© Functional of the Operational Semantics

Rm Semantics and Verification of Software ter semester 2008

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.3) justifies the
following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (£ --» X),

assigns to every statement ¢ € C'md a partial state transformation
O[c] : ¥ --» X, which is defined as follows:

oo = {° if (¢,0) — o' for some o’/ € 2
€19 = | undefined otherwise

m Semantics and Verification of Software Winter semester 2008,/09 6

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.3) justifies the
following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (£ --» X),

assigns to every statement ¢ € C'md a partial state transformation
O[c] : ¥ --» X, which is defined as follows:

oo = o if (¢,0) — o' for some o’/ € 2
€19 = | undefined otherwise

Remark: O[c]o can indeed be undefined
(consider e.g. ¢ = while true do skip; see Corollary 3.2)

m Semantics and Verification of Software Winter semester 2008,/09 6

Equivalence of Statements

Definition 4.2 (Operational equivalence)

Two statements c;,co € Cmd are called (operationally) equivalent
(notation: ¢; ~ cg) if

D[[Cl]] = D[[CQ]].

m' Semantics and Verification of Software Winter semester 2008,/09

Equivalence of Statements

Definition 4.2 (Operational equivalence)

Two statements c;,co € Cmd are called (operationally) equivalent
(notation: ¢; ~ cg) if

D[[Cl]] = D[[CQ]].

Thus:
0 ¢ ~ cg iff Ofcr]o = Ofez]o for every o € &
o In particular, Ofc;]o is undefined iff Ofca]o is undefined

m' Semantics and Verification of Software Winter semester 2008,/09

“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

For every b € BExp and c € Cmd,

while b do ¢ ~ if b then (c;while b do c¢) else skip.

m' Semantics and Verification of Software Winter semester 2008,/09

“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

For every b € BExp and c € Cmd,

while b do ¢ ~ if b then (c;while b do c¢) else skip.

on the board O

m Semantics and Verification of Software Winter semester 2008,/09

© Summary: Operational Semantics

Rm Semantics and Verification of Software ter semester 2008

Summary: Operational Semantics

o Formalized by evaluation/execution relations

Rm Semantics and Verification of Software Winter semester 2008,/09 10

Summary: Operational Semantics

o Formalized by evaluation/execution relations

@ Inductively defined by derivation trees using structural operational
rules

Rm Semantics and Verification of Software Winter semester 2008,/09 10

Summary: Operational Semantics

o Formalized by evaluation/execution relations

@ Inductively defined by derivation trees using structural operational
rules

@ Enables proofs about operational behaviour of programs using
structural induction

Rm Semantics and Verification of Software Winter semester 2008,/09 10

Summary: Operational Semantics

o Formalized by evaluation/execution relations

@ Inductively defined by derivation trees using structural operational
rules

@ Enables proofs about operational behaviour of programs using
structural induction

@ Semantic functional characterizes complete input/output
behaviour of programs

Rm Semantics and Verification of Software Winter semester 2008,/09 10

@ The Denotational Approach

Rm Semantics and Verification of Software ter semester 2008

Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output
behaviour

Rm Semantics and Verification of Software Winter semester 2008,/09 12

Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output
behaviour

o In operational semantics: indirect definition of semantic functional
O[.] by execution relation

Rm Semantics and Verification of Software Winter semester 2008,/09 12

Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output
behaviour

o In operational semantics: indirect definition of semantic functional
O[.] by execution relation

@ Now: abstract from operational details

Rm Semantics and Verification of Software Winter semester 2008,/09 12

Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output
behaviour

o In operational semantics: indirect definition of semantic functional
O[.] by execution relation

@ Now: abstract from operational details

o Denotational semanics: direct definition of program effect by
induction on its syntactic structure

Rm Semantics and Verification of Software Winter semester 2008,/09

© Denotational Semantics of Expressions

Rm Semantics and Verification of Software ter semester 2008

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 4.4 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,
A[.] : AExp — (¥ — Z),
is given by:
Alz]o = = Wlar+as]o := Ufai]o + Afaz]o

Wlz]o = o(z) Alar-as]o := Ufai]o — Afaz]o
Alar*az]o := Afai]o * Afaz]o

m Semantics and Verification of Software Winter semester 2008,/09 14

Semantics of Boolean Expressions

Definition 4.5 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,
B[.] : BEzp — (X — B),
is given by:
Bft]o =t
Blar=as]o = ;E:IJSZ gtlglleﬂfvir]i]se: Alas]o
Blay>as]o = :;fsee gtl%leﬂfvi]l]; > Wlaz]o
T
R
Bby V bo]o := ,‘:";‘Lsee gﬂfﬂi = Bbe]o = false

m Semantics and Verification of Software Winter semester 2008,/09

© Denotational Semantics of Statements

Rm Semantics and Verification of Software ter semester 2008

Semantics of Statements 1

@ Now: semantic functional

C[.]: Cmd — (£ --» %)

Rm Semantics and Verification of Software Winter semester 2008,/09 17

Semantics of Statements 1

® Now: semantic functional
Cl.]: Cmd — (£ --+ %)
® Same type as operational functional
O[] : Cmd — (2 --+ %)
(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)

Rm Semantics and Verification of Software Winter semester 2008,/09 17

Semantics of Statements 1

® Now: semantic functional
C[.]: Cmd — (£ --» %)
® Same type as operational functional
O[] : Cmd — (2 --+ %)
(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)
® Inductive definition employs auxiliary functions:
o identity on states: idy : X --+ X :0+— 0
o (strict) composition of partial state transformations:
0:(E-») x(E--2%)—> (X--%)
where, for every f,g: 3 --+» X and 0 € X,
(go f)(o) = {g(f(a)) if f(o) defined

undefined otherwise

o semantic conditional:
cond: (X —=>B)x (B--+X)x(Z--»%) = (Z--2%)
where, for every p: X — B, f,g: ¥ --+» ¥, and g € X,

cond(p, f, g)(0) := {f(a) if p(o) = true

g(o) otherwise

Rm Semantics and Verification of Software Winter semester 2008,/09 17

Semantics of Statements 11

Definition 4.6 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

Cl.]: Cmd — (£ --» %),

is given by:
C[skip] := idy
Clz :=a]o = o[z — Aa]o]
Q:[[Cl;CQ]] = Q:[[Cg]] o Q:[[Cl]]

C[if b then ¢; else 3] :
¢[while b do (] :

cond(B[b], €[e1], €eca])
fix(®)

where @ : (X --» ¥) — (X --» X) : f+— cond(B[d], f o €[c],idx)

m' Semantics and Verification of Software Winter semester 2008,/09

Semantics of Statements 111

Remarks:
@ Definition of €[c] given by induction on syntactic structure of
ce Cmd

o in particular, €[while b do] only refers to B[b] and €[c]
(and not to €Jwhile b do] again)
o note difference to O[c]:

(b,0) — true {c,0) — ¢’ (while b do ¢,0’) — o

(wh-t)

(while b do ¢,0) — o

Rm Semantics and Verification of Software Winter semester 2008,/09

Semantics of Statements 111

Remarks:
@ Definition of €[c] given by induction on syntactic structure of
ce Cmd

o in particular, €[while b do] only refers to B[b] and €[c]
(and not to €Jwhile b do] again)
o note difference to O[c]:

(b,0) — true (c,0) — ¢’ (while b do ¢,o’y — 0"

wh-t
(wh-t) (while b do ¢,0) — o

o In €fcy ;2] := €[ca] o €[e1], function composition o has to be
strict since non-termination of ¢; implies non-termination of ¢ ;co

Rm Semantics and Verification of Software Winter semester 2008,/09 19

Semantics of Statements 111

Remarks:
@ Definition of €[c] given by induction on syntactic structure of
ce Cmd

o in particular, €[while b do] only refers to B[b] and €[c]
(and not to €Jwhile b do] again)
o note difference to O[c]:

(b,0) — true (c,0) — ¢’ (while b do ¢,o’y — 0"

h-t
(wh-t) (while b do ¢,0) — o
o In €fcy ;2] := €[ca] o €[e1], function composition o has to be
strict since non-termination of ¢; implies non-termination of ¢ ;co
o In ¢fwhile b do] := fix(®), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”

m' Semantics and Verification of Software Winter semester 2008,/09 19

Semantics of Statements 111

Remarks:
@ Definition of €[c] given by induction on syntactic structure of
ce Cmd

o in particular, €[while b do] only refers to B[b] and €[c]
(and not to €Jwhile b do] again)
o note difference to O[c]:

(b,0) — true (c,0) — ¢’ (while b do ¢,o’y — 0"

h-t
(wh-t) (while b do ¢,0) — o
o In €fcy ;2] := €[ca] o €[e1], function composition o has to be
strict since non-termination of ¢; implies non-termination of ¢ ;co
o In ¢fwhile b do] := fix(®), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”

But: why fixpoints?

m' Semantics and Verification of Software Winter semester 2008,/09 19

	Repetition: Execution of Statements
	Functional of the Operational Semantics
	Summary: Operational Semantics
	The Denotational Approach
	Denotational Semantics of Expressions
	Denotational Semantics of Statements

