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Semantics of Statements 1

® Now: semantic functional
C[.]: Cmd — (£ --» %)
® Same type as operational functional
O[] : Cmd — (2 --+ %)
(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)
® Inductive definition employs auxiliary functions:
o identity on states: idy : X --+ X :0+— 0
o (strict) composition of partial state transformations:
0:(E-» ) x(E--2%)—> (X--%)
where, for every f,g: 3 --+» X and 0 € X,
(go f)(o) = {g(f(a)) if f(o) defined

undefined otherwise

o semantic conditional:
cond: (X —=>B)x (B--+X)x(Z--»%) = (Z--2%)
where, for every p: X — B, f,g: ¥ --+» ¥, and g € X,

cond(p, f, g)(0) := {f(a) if p(o) = true

g(o) otherwise
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Semantics of Statements 11

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

Cl.]: Cmd — (£ --» %),

is given by:
C[skip] := idy
Clz :=a]o = o[z — Aa]o]
Q:[[Cl;CQ]] = Q:[[Cg]] o Q:[[Cl]]

C[if b then ¢; else 3] :
¢[while b do (] :

cond(B[b], €[e1], €eca])
fix(®)

where @ : (X --» ¥) — (X --» X) : f+— cond(B[d], f o €[c],idx)

m' Semantics and Verification of Software Winter semester 2008,/09



Semantics of Statements 111

Remarks:
@ Definition of €[c] given by induction on syntactic structure of
ce Cmd

o in particular, €[while b do ] only refers to B[b] and €[c]
(and not to €Jwhile b do ] again)
o note difference to O[c]:

(b,0) — true (c,0) — ¢’ (while b do ¢,o’y — 0"

h-t
(wh-t) (while b do ¢,0) — o
o In €fcy ;2] := €[ca] o €[e1], function composition o has to be
strict since non-termination of ¢; implies non-termination of ¢ ;co
o In ¢fwhile b do ] := fix(®), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”

But: why fixpoints?
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© Fixpoint Semantics of while Loop
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Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 4.3)
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Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 4.6, we obtain:

¢[while b do (]
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Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 4.6, we obtain:

¢[while b do (]

o ¢[if b then (c;while b do c¢) else skip]
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Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 4.3)

@ Using the known parts of Def. 4.6, we obtain:

¢[while b do (]
(=)

C[if b then (c;while b do c) else skip]
Def. 4.6

cond(B[b], €[c;while b do ], €[skip])
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Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 4.6, we obtain:
¢[while b do (]

o ¢[if b then (c;while b do c¢) else skip]

Def 4.6 cond(B[b], €[c;while b do ], €[skip])
Def. 4.6

cond(B[b], €[while b do ] o €[c],idx)
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Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 4.6, we obtain:
¢[while b do (]
o ¢[if b then (c;while b do c¢) else skip]
Def 4.6 cond(B[b], €[c;while b do ], €[skip])

Def. 46 cond(B[b], €[while b do ] o €[c],idx)

@ Abbreviating f := €[while b do ¢] this yields:
f = cond(B[b], f o €[c],idx)
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Why Fixpoints?

o Goal: preserve validity of equivalence
¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 4.6, we obtain:
¢[while b do (]

o ¢[if b then (c;while b do c¢) else skip]

Def 4.6 cond(B[b], €[c;while b do ], €[skip])

Def. 46 cond(B[b], €[while b do ] o €[c],idx)

@ Abbreviating f := €[while b do ¢] this yields:
f = cond(B[b], f o €[c],idx)
@ Hence f must be a solution of this recursive equation
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Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 4.3)
Using the known parts of Def. 4.6, we obtain:
¢[while b do (]
o ¢[if b then (c;while b do c¢) else skip]
Def 4.6 cond(B[b], €[c;while b do ], €[skip])

cond(B[b], €[while b do ] o €[c],idx)

©

Def. 4.6

©

Abbreviating f := €[while b do c] this yields:
f = cond(B[b], f o €[c],idx)
Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping
O:(X--+3)—= (X --+3): f— cond(B[b], f o €[], idy)
(since the equation can be stated as f = ®(f))
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Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics
Existence: there does no need to exist any fixpoint. Examples:
@ ¢1:N—-N:n+— n+1 has no fixpoint

. . g1 if f=go
QP :(Y-»%)—=(E--»%):fr {92 otherwise

(where g1 # g2) has no fixpoint
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Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Existence: there does no need to exist any fixpoint. Examples:
@ ¢1:N—-N:n+— n+1 has no fixpoint

. . g1 if f=go
QP :(Y-»%)—=(E--»%):fr {92 otherwise

(where g1 # g2) has no fixpoint

Solution: in our setting, fixpoints always exist
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Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics
Existence: there does no need to exist any fixpoint. Examples:
@ ¢1:N—-N:n+— n+1 has no fixpoint

. . g1 if f=go
QP :(Y-»%)—=(E--»%):fr {92 otherwise

(where g1 # g2) has no fixpoint

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:
@ ¢2:N — N:n s n? has fixpoints {0,1}
@ every state transformation f is a fixpoint of
Oy:(N-2Y)=(E--):f—f
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Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics
Existence: there does no need to exist any fixpoint. Examples:
@ ¢1:N—-N:n+— n+1 has no fixpoint

. . g1 if f=go
QP :(Y-»%)—=(E--»%):fr {92 otherwise

(where g1 # g2) has no fixpoint
Solution: in our setting, fixpoints always exist
Uniqueness: there might exist several fixpoints. Examples:
@ ¢2:N — N:n s n? has fixpoints {0,1}
@ every state transformation f is a fixpoint of
Oy:(N-2Y)=(E--):f—f

Solution: uniqueness guaranteed by choosing a special fixpoint

Rm Semantics and Verification of Software Winter semester 2008,/09



© Characterization of fix(®)
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Characterization of fix(®) I

o Let b € BExzp and ¢ € Cmd
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Characterization of fix(®) I

o Let b € BExzp and ¢ € Cmd
o Let ®(f) := cond(B[b], f o €[c],idx)
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Characterization of fix(®) I

o Let b € BExzp and ¢ € Cmd
o Let ®(f) := cond(B[b], f o €[c],idx)
o Let fy: X --» X be a fixpoint of @, i.e., ®(fy) = fo
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Characterization of fix(®) I

o Let b € BExp and ¢ € Cmd

o Let ®(f) := cond(B[b], f o €[c],idx)

o Let fy: X --» X be a fixpoint of @, i.e., ®(fy) = fo

o Given some initial state op € X, we will distinguish the following
cases:

@ loop while b do ¢ terminates after n iterations (n € N)
@ body c diverges in the nth iteration

(since it contains a non-terminating while statement)
© loop while b do c itself diverges
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Case 1: Termination of Loop

@ Loop while b do ¢ terminates after n iterations (n € N)
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Case 1: Termination of Loop

@ Loop while b do ¢ terminates after n iterations (n € N)

o Formally: there exist o1,...,0, € X such that
true f0<i<n
B[b]o; = false ifi=mn and
ClcJoi = oita forevery 0 <i<n
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Case 1: Termination of Loop

@ Loop while b do ¢ terminates after n iterations (n € N)

o Formally: there exist o1,...,0, € X such that
true f0<i<n
Blb]o; = {false ifi=mn and
ClcJoi = oita forevery 0 <i<n

o Now the definition
O(f) := cond(B[b], f o €[], idx) implies, for every 0 < i < n,
O(fo)(o:) = (foo€c])(o;) since B[b]o; = true
= fo(oit1) and
O(fo)(on) = op since B[b]o,, = false

Rm Semantics and Verification of Software Winter semester 2008,/09



Case 1: Termination of Loop

@ Loop while b do ¢ terminates after n iterations (n € N)

o Formally: there exist o1,...,0, € X such that
true if0<i<n
B[b]o; = {false ifi=n and
ClcJoi = oita forevery 0 <i<n
o Now the definition
O(f) := cond(B[b], f o €[], idx) implies, for every 0 < i < n,
O(fo)(o:) = (foo€c])(o;) since B[b]o; = true
= fo(oit1) and
O(fo)(on) = op since B[b]o,, = false
@ Since ®(fy) = fo it follows that
ooy = { Plost) RO <
and hence

foloo) = folo1) = ... folom) = on

m' Semantics and Verification of Software Winter semester 2008,/09



Case 1: Termination of Loop

@ Loop while b do ¢ terminates after n iterations (n € N)

o Formally: there exist o1,...,0, € X such that
true if0<i<n
B[b]o; = {false ifi=n and
ClcJoi = oita forevery 0 <i<n
o Now the definition
O(f) := cond(B[b], f o €[], idx) implies, for every 0 < i < n,
O(fo)(o:) = (foo€c])(o;) since B[b]o; = true
= fo(oit1) and
O(fo)(on) = op since B[b]o,, = false
@ Since ®(fy) = fo it follows that
ooy = { Plost) RO <
and hence

foloo) = folo1) = ... folom) = on

— All fixpoints coincide on og!
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Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)
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Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

o Formally: there exist o1,...,0,-1 € % such that

B[b]o; = true for every 0 <1i < n and
e[or = {am f0<i<n-—2

undefined ifi=n-1
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Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

o Formally: there exist o1,...,0,-1 € % such that

B[b]o; = true for every 0 <1i < n and

) 0i+1 1f0§z§n—2
Ce]oi = {undeﬁned fi=n-1

@ Just as in the previous case (setting o, := undefined) it follows
that

fo(og) = undefined
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Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

o Formally: there exist o1,...,0,-1 € % such that

B[b]o; = true for every 0 <1i < n and

) 0i+1 1f0§z§n—2
Ce]oi = {undeﬁned fi=n-1

@ Just as in the previous case (setting o, := undefined) it follows
that
fo(og) = undefined

= Again all fixpoints coincide on gg!
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Case 3: Divergence of Loop

@ Loop while b do c diverges
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Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist o1, 09,... € X such that

B[b]o; = true and
ClcJoi = oip1 for every i € N
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Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist o1, 09,... € X such that

B[b]o; = true and
ClcJoi = oip1 for every i € N

@ Here only derivable:

foloo) = fo(o;) for every i € N
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Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist o1, 09,... € X such that

B[b]o; = true and
ClcJoi = oip1 for every i € N

@ Here only derivable:

foloo) = fo(o;) for every i € N

—> Value of fy(0g) not determined!
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For ®(fy) = fo and initial state o9 € X, case distinction yields:
@ Loop while b do ¢ terminates after n iterations (n € N)
= fo(oo) = on
© Body c diverges in the nth iteration
= fo(op) = undefined
© Loop while b do c diverges
= no condition on fy (only fo(og) = fo(o;) for every i € N)
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For ®(fy) = fo and initial state o9 € X, case distinction yields:
@ Loop while b do ¢ terminates after n iterations (n € N)
= fo(oo) = on
© Body c diverges in the nth iteration
= fo(op) = undefined
© Loop while b do c diverges
= no condition on fy (only fo(og) = fo(o;) for every i € N)

o Not surprising since, e.g., the loop while true do skip yields for
every f: X --» 3
®(f) = cond(B[true], f o €[skip],ids) = f
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For ®(fy) = fo and initial state o9 € X, case distinction yields:
@ Loop while b do ¢ terminates after n iterations (n € N)
= fo (UO) = 0On
© Body c diverges in the nth iteration
= fo(op) = undefined
© Loop while b do c diverges
= no condition on fy (only fo(og) = fo(o;) for every i € N)

o Not surprising since, e.g., the loop while true do skip yields for
every f: X --» 3
®(f) = cond(B[true], f o €[skip],ids) = f
@ On the other hand, our operational understanding requires, for
every og € X,

¢[while true do skip]op = undefined
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For ®(fy) = fo and initial state o9 € X, case distinction yields:
@ Loop while b do ¢ terminates after n iterations (n € N)
= fo (UO) = 0On
© Body c diverges in the nth iteration
= fo(op) = undefined
© Loop while b do c diverges
= no condition on fy (only fo(og) = fo(o;) for every i € N)

o Not surprising since, e.g., the loop while true do skip yields for
every f: X --» 3
®(f) = cond(B[true], f o €[skip],ids) = f
@ On the other hand, our operational understanding requires, for
every og € X,
¢[while true do skip]op = undefined

fix(®) is the least defined fixpoint of ®.
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Making it Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g:% -—» X, let

/

fCg < foreveryo,0' €X: f(o)=0 = g(o)=0

(g is “at least as defined” as f)
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Making it Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g:% -—» X, let

/

fCg < foreveryo,0' €X: f(o)=0 = g(o)=0

(g is “at least as defined” as f)

o Equivalent to requiring
graph(f) C graph(g)
where
graph(h) := {(0,0") | 0 € 3,0’ = h(o) defined} C ¥ x ¥

for every h: 3 --+ X
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Making it Precise 11

Example 5.1

Let = € Var be fixed, and let fo, f1, f2, f3: 2 --+» X be given by

fo(o) := undefined
if o(z) even

filo) = undeﬁned otherwise

- if o(x) odd
fa(o) == undeﬁned otherwise
fa(o) =0
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Making it Precise 11

Example 5.1

Let = € Var be fixed, and let fo, f1, f2, f3: 2 --+» X be given by

fo(o) := undefined
if o(z) even

filo) = undeﬁned otherwise

- if o(x) odd
fa(o) == undeﬁned otherwise
fa(o) =0

This implies fo C fi C f3, fo C fa C f3, fi £ fo, and fo Z fi
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Characterization of fix(®) IT

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

B (fix(D)) = fix(®)

o fix(®) is minimal with respect to C, i.e., for every fo: X --» X
such that ®(fy) = fo,

fix(®) T fo
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Characterization of fix(®) IT

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

B (fix(D)) = fix(®)

o fix(®) is minimal with respect to C, i.e., for every fo: X --» X
such that ®(fy) = fo,
fix(®) C fo

Example 5.2

For while true do skip we obtain for every f : 3 --» 3:

®(f) = cond(B[true], f o €[skip],idy) = f
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Characterization of fix(®) IT

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

B (fix(D)) = fix(®)

o fix(®) is minimal with respect to C, i.e., for every fo: X --» X
such that ®(fy) = fo,
fix(®) C fo

Example 5.2

For while true do skip we obtain for every f : 3 --» 3:
®(f) = cond(B[true], f o €[skip],idy) = f

= fix(®) = fy where fy(o) := undefined for every o € ¥
(that is, graph(fg) = 0)
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Characterization of fix(®) ITI

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idx)

@ Show how it can be “computed” (more exactly: approximated)
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Characterization of fix(®) ITI

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idx)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain Y --+ X: chain-complete partial order

on function ®: continuity
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