

# Semantics and Verification of Software

## Lecture 6: Chain-Complete Partial Orders

Thomas Noll

Lehrstuhl für Informatik 2  
(Software Modeling and Verification)

RWTH Aachen University

[noll@cs.rwth-aachen.de](mailto:noll@cs.rwth-aachen.de)

<http://www-i2.informatik.rwth-aachen.de/i2/svsw08/>

Winter semester 2008/09

1 Repetition: Denotational Semantics

2 Chain-Complete Partial Orders

- G. Winskel: *The Formal Semantics of Programming Languages*, The MIT Press, 1996  
(Chapter 5; notations somewhat different)
- H.R. Nielson, F. Nielson: *Semantics with Applications: A Formal Introduction*, Wiley, 1992  
(Chapter 4;  
[http://www.daimi.au.dk/~bra8130/Wiley\\_book/wiley.html](http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html))
- J.E. Stoy: *Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory*, The MIT Press, 1977  
(very comprehensive but a bit outdated)

## Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

$$\mathfrak{C}[\cdot] : Cmd \rightarrow (\Sigma \dashrightarrow \Sigma),$$

is given by:

$$\begin{aligned}\mathfrak{C}[\text{skip}] &:= \text{id}_\Sigma \\ \mathfrak{C}[x := a]\sigma &:= \sigma[x \mapsto \mathfrak{A}[a]\sigma] \\ \mathfrak{C}[c_1; c_2] &:= \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1] \\ \mathfrak{C}[\text{if } b \text{ then } c_1 \text{ else } c_2] &:= \text{cond}(\mathfrak{B}[b], \mathfrak{C}[c_1], \mathfrak{C}[c_2]) \\ \mathfrak{C}[\text{while } b \text{ do } c] &:= \text{fix}(\Phi)\end{aligned}$$

where  $\Phi : (\Sigma \dashrightarrow \Sigma) \rightarrow (\Sigma \dashrightarrow \Sigma) : f \mapsto \text{cond}(\mathfrak{B}[b], f \circ \mathfrak{C}[c], \text{id}_\Sigma)$

# Why Fixpoints?

- Goal: preserve **validity of equivalence**

$$\mathfrak{C}[\text{while } b \text{ do } c] \stackrel{(*)}{=} \mathfrak{C}[\text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}]$$

(cf. Lemma 4.3)

- Using the known parts of Def. 4.6, we obtain:

$$\begin{aligned}\mathfrak{C}[\text{while } b \text{ do } c] &\stackrel{(*)}{=} \mathfrak{C}[\text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}] \\ &\stackrel{\text{Def. 4.6}}{=} \text{cond}(\mathfrak{B}[b], \mathfrak{C}[c; \text{while } b \text{ do } c], \mathfrak{C}[\text{skip}]) \\ &\stackrel{\text{Def. 4.6}}{=} \text{cond}(\mathfrak{B}[b], \mathfrak{C}[\text{while } b \text{ do } c] \circ \mathfrak{C}[c], \text{id}_\Sigma)\end{aligned}$$

- Abbreviating  $f := \mathfrak{C}[\text{while } b \text{ do } c]$  this yields:

$$f = \text{cond}(\mathfrak{B}[b], f \circ \mathfrak{C}[c], \text{id}_\Sigma)$$

- Hence  $f$  must be a **solution** of this recursive equation
- In other words:  $f$  must be a **fixpoint** of the mapping

$$\Phi : (\Sigma \dashrightarrow \Sigma) \rightarrow (\Sigma \dashrightarrow \Sigma) : f \mapsto \text{cond}(\mathfrak{B}[b], f \circ \mathfrak{C}[c], \text{id}_\Sigma)$$

(since the equation can be stated as  $f = \Phi(f)$ )

# Characterization of $\text{fix}(\Phi)$ I

For  $\Phi(f_0) = f_0$  and initial state  $\sigma_0 \in \Sigma$ , case distinction yields:

- ① Loop `while b do c` terminates after  $n$  iterations ( $n \in \mathbb{N}$ )  
 $\implies f_0(\sigma_0) = \sigma_n$
- ② Body `c` diverges in the  $n$ th iteration  
 $\implies f_0(\sigma_0) = \text{undefined}$
- ③ Loop `while b do c` diverges  
 $\implies$  no condition on  $f_0$  (only  $f_0(\sigma_0) = f_0(\sigma_i)$  for every  $i \in \mathbb{N}$ )

• Not surprising since, e.g., the loop `while true do skip` yields for every  $f : \Sigma \dashrightarrow \Sigma$ :

$$\Phi(f) = \text{cond}(\mathfrak{B}[\text{true}], f \circ \mathfrak{C}[\text{skip}], \text{id}_\Sigma) = f$$

• On the other hand, our operational understanding requires, for every  $\sigma_0 \in \Sigma$ ,

$$\mathfrak{C}[\text{while true do skip}]\sigma_0 = \text{undefined}$$

## Conclusion

$\text{fix}(\Phi)$  is the **least defined fixpoint** of  $\Phi$ .

To use fixpoint theory, the notion of “least defined” has to be made precise.

- Given  $f, g : \Sigma \dashrightarrow \Sigma$ , let

$$f \sqsubseteq g \iff \text{for every } \sigma, \sigma' \in \Sigma : f(\sigma) = \sigma' \implies g(\sigma) = \sigma'$$

( $g$  is “at least as defined” as  $f$ )

- Equivalent to requiring

$$\text{graph}(f) \subseteq \text{graph}(g)$$

where

$$\text{graph}(h) := \{(\sigma, \sigma') \mid \sigma \in \Sigma, \sigma' = h(\sigma) \text{ defined}\} \subseteq \Sigma \times \Sigma$$

for every  $h : \Sigma \dashrightarrow \Sigma$

## Goals:

- Prove **existence** of  $\text{fix}(\Phi)$  for  $\Phi(f) = \text{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \text{id}_\Sigma)$
- Show how it can be "**computed**" (more exactly: approximated)

## Sufficient conditions:

on domain  $\Sigma \dashrightarrow \Sigma$ : **chain-complete partial order**

on function  $\Phi$ : **continuity**

1 Repetition: Denotational Semantics

2 Chain-Complete Partial Orders

## Definition 6.1 (Partial order)

A **partial order (PO)**  $(D, \sqsubseteq)$  consists of a set  $D$ , called **domain**, and of a relation  $\sqsubseteq \subseteq D \times D$  such that, for every  $d_1, d_2, d_3 \in D$ ,

reflexivity:  $d_1 \sqsubseteq d_1$

transitivity:  $d_1 \sqsubseteq d_2$  and  $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry:  $d_1 \sqsubseteq d_2$  and  $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called **total** if, in addition, always  $d_1 \sqsubseteq d_2$  or  $d_2 \sqsubseteq d_1$ .

## Definition 6.1 (Partial order)

A **partial order (PO)**  $(D, \sqsubseteq)$  consists of a set  $D$ , called **domain**, and of a relation  $\sqsubseteq \subseteq D \times D$  such that, for every  $d_1, d_2, d_3 \in D$ ,

reflexivity:  $d_1 \sqsubseteq d_1$

transitivity:  $d_1 \sqsubseteq d_2$  and  $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry:  $d_1 \sqsubseteq d_2$  and  $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called **total** if, in addition, always  $d_1 \sqsubseteq d_2$  or  $d_2 \sqsubseteq d_1$ .

## Example 6.2

- ①  $(\mathbb{N}, \leq)$  is a total partial order

## Definition 6.1 (Partial order)

A **partial order (PO)**  $(D, \sqsubseteq)$  consists of a set  $D$ , called **domain**, and of a relation  $\sqsubseteq \subseteq D \times D$  such that, for every  $d_1, d_2, d_3 \in D$ ,

reflexivity:  $d_1 \sqsubseteq d_1$

transitivity:  $d_1 \sqsubseteq d_2$  and  $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry:  $d_1 \sqsubseteq d_2$  and  $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called **total** if, in addition, always  $d_1 \sqsubseteq d_2$  or  $d_2 \sqsubseteq d_1$ .

## Example 6.2

- ①  $(\mathbb{N}, \leq)$  is a total partial order
- ②  $(2^{\mathbb{N}}, \subseteq)$  is a (non-total) partial order

## Definition 6.1 (Partial order)

A **partial order (PO)**  $(D, \sqsubseteq)$  consists of a set  $D$ , called **domain**, and of a relation  $\sqsubseteq \subseteq D \times D$  such that, for every  $d_1, d_2, d_3 \in D$ ,

reflexivity:  $d_1 \sqsubseteq d_1$

transitivity:  $d_1 \sqsubseteq d_2$  and  $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry:  $d_1 \sqsubseteq d_2$  and  $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called **total** if, in addition, always  $d_1 \sqsubseteq d_2$  or  $d_2 \sqsubseteq d_1$ .

## Example 6.2

- ❶  $(\mathbb{N}, \leq)$  is a total partial order
- ❷  $(2^{\mathbb{N}}, \subseteq)$  is a (non-total) partial order
- ❸  $(\mathbb{N}, <)$  is not a partial order

## Definition 6.1 (Partial order)

A **partial order (PO)**  $(D, \sqsubseteq)$  consists of a set  $D$ , called **domain**, and of a relation  $\sqsubseteq \subseteq D \times D$  such that, for every  $d_1, d_2, d_3 \in D$ ,

reflexivity:  $d_1 \sqsubseteq d_1$

transitivity:  $d_1 \sqsubseteq d_2$  and  $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry:  $d_1 \sqsubseteq d_2$  and  $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called **total** if, in addition, always  $d_1 \sqsubseteq d_2$  or  $d_2 \sqsubseteq d_1$ .

## Example 6.2

- ❶  $(\mathbb{N}, \leq)$  is a total partial order
- ❷  $(2^{\mathbb{N}}, \subseteq)$  is a (non-total) partial order
- ❸  $(\mathbb{N}, <)$  is not a partial order (since not reflexive)

## Lemma 6.3

$(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$  is a partial order.

## Lemma 6.3

$(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$  is a partial order.

Proof.

see Exercise 3



## Definition 6.4 (Chain, (least) upper bound)

Let  $(D, \sqsubseteq)$  be a partial order and  $S \subseteq D$ .

- ①  $S$  is called a **chain** in  $D$  if, for every  $s_1, s_2 \in S$ ,  
$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$
(that is,  $S$  is a totally ordered subset of  $D$ ).

# Chains and Least Upper Bounds

Definition 6.4 (Chain, (least) upper bound)

Let  $(D, \sqsubseteq)$  be a partial order and  $S \subseteq D$ .

- ①  $S$  is called a **chain** in  $D$  if, for every  $s_1, s_2 \in S$ ,  
$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$
(that is,  $S$  is a totally ordered subset of  $D$ ).
- ② An element  $d \in D$  is called an **upper bound** of  $S$  if  $s \sqsubseteq d$  for every  $s \in S$  (notation:  $S \sqsubseteq d$ ).

# Chains and Least Upper Bounds

Definition 6.4 (Chain, (least) upper bound)

Let  $(D, \sqsubseteq)$  be a partial order and  $S \subseteq D$ .

- ①  $S$  is called a **chain** in  $D$  if, for every  $s_1, s_2 \in S$ ,

$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$

(that is,  $S$  is a totally ordered subset of  $D$ ).

- ② An element  $d \in D$  is called an **upper bound** of  $S$  if  $s \sqsubseteq d$  for every  $s \in S$  (notation:  $S \sqsubseteq d$ ).
- ③ An upper bound  $d$  of  $S$  is called **least upper bound (LUB)** or **supremum** of  $S$  if  $d \sqsubseteq d'$  for every upper bound  $d'$  of  $S$  (notation:  $d = \sqcup S$ ).

# Chains and Least Upper Bounds

Definition 6.4 (Chain, (least) upper bound)

Let  $(D, \sqsubseteq)$  be a partial order and  $S \subseteq D$ .

- ①  $S$  is called a **chain** in  $D$  if, for every  $s_1, s_2 \in S$ ,

$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$

(that is,  $S$  is a totally ordered subset of  $D$ ).

- ② An element  $d \in D$  is called an **upper bound** of  $S$  if  $s \sqsubseteq d$  for every  $s \in S$  (notation:  $S \sqsubseteq d$ ).
- ③ An upper bound  $d$  of  $S$  is called **least upper bound (LUB)** or **supremum** of  $S$  if  $d \sqsubseteq d'$  for every upper bound  $d'$  of  $S$  (notation:  $d = \sqcup S$ ).

Example 6.5

- ① Every subset  $S \subseteq \mathbb{N}$  is a chain in  $(\mathbb{N}, \leq)$ .  
It has a LUB (its greatest element) iff it is finite.

# Chains and Least Upper Bounds

Definition 6.4 (Chain, (least) upper bound)

Let  $(D, \sqsubseteq)$  be a partial order and  $S \subseteq D$ .

- ①  $S$  is called a **chain** in  $D$  if, for every  $s_1, s_2 \in S$ ,

$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$

(that is,  $S$  is a totally ordered subset of  $D$ ).

- ② An element  $d \in D$  is called an **upper bound** of  $S$  if  $s \sqsubseteq d$  for every  $s \in S$  (notation:  $S \sqsubseteq d$ ).
- ③ An upper bound  $d$  of  $S$  is called **least upper bound (LUB)** or **supremum** of  $S$  if  $d \sqsubseteq d'$  for every upper bound  $d'$  of  $S$  (notation:  $d = \sqcup S$ ).

Example 6.5

- ① Every subset  $S \subseteq \mathbb{N}$  is a chain in  $(\mathbb{N}, \leq)$ .  
It has a LUB (its greatest element) iff it is finite.
- ②  $\{\emptyset, \{0\}, \{0, 1\}, \dots\}$  is a chain in  $(2^{\mathbb{N}}, \subseteq)$  with LUB  $\mathbb{N}$ .

## Definition 6.6 (Chain completeness)

A partial order is called **chain complete (CCPO)** if every of its chains has a least upper bound.

## Definition 6.6 (Chain completeness)

A partial order is called **chain complete (CCPO)** if every of its chains has a least upper bound.

## Example 6.7

- ①  $(2^{\mathbb{N}}, \subseteq)$  is a CCPO with  $\bigsqcup S = \bigcup_{M \in S} M$  for every chain  $S \subseteq 2^{\mathbb{N}}$ .

## Definition 6.6 (Chain completeness)

A partial order is called **chain complete (CCPO)** if every of its chains has a least upper bound.

## Example 6.7

- ①  $(2^{\mathbb{N}}, \subseteq)$  is a CCPO with  $\bigsqcup S = \bigcup_{M \in S} M$  for every chain  $S \subseteq 2^{\mathbb{N}}$ .
- ②  $(\mathbb{N}, \leq)$  is not chain complete

## Definition 6.6 (Chain completeness)

A partial order is called **chain complete (CCPO)** if every of its chains has a least upper bound.

## Example 6.7

- ①  $(2^{\mathbb{N}}, \subseteq)$  is a CCPO with  $\bigsqcup S = \bigcup_{M \in S} M$  for every chain  $S \subseteq 2^{\mathbb{N}}$ .
- ②  $(\mathbb{N}, \leq)$  is not chain complete  
(since, e.g., the chain  $\mathbb{N}$  has no upper bound).

## Corollary 6.8

*Every CCPO has a least element  $\sqcup \emptyset$ .*

## Corollary 6.8

*Every CCPO has a least element  $\sqcup \emptyset$ .*

## Proof.

Let  $(D, \sqsubseteq)$  be a CCPO.

- By definition,  $\emptyset$  is a chain in  $D$ .

## Corollary 6.8

*Every CCPO has a least element  $\sqcup \emptyset$ .*

## Proof.

Let  $(D, \sqsubseteq)$  be a CCPO.

- By definition,  $\emptyset$  is a chain in  $D$ .
- By definition, every  $d \in D$  is an upper bound of  $\emptyset$ .

## Corollary 6.8

*Every CCPO has a least element  $\sqcup \emptyset$ .*

## Proof.

Let  $(D, \sqsubseteq)$  be a CCPO.

- By definition,  $\emptyset$  is a chain in  $D$ .
- By definition, every  $d \in D$  is an upper bound of  $\emptyset$ .
- Thus  $\sqcup \emptyset$  exists and is the least element of  $D$ .



## Lemma 6.9

- $(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$  is a CCPo with least element  $f_\emptyset$  where  $\text{graph}(f_\emptyset) = \emptyset$ .
- In particular, for every chain  $S \subseteq \Sigma \dashrightarrow \Sigma$ ,

$$\text{graph} \left( \bigsqcup S \right) = \bigcup_{f \in S} \text{graph}(f).$$

## Lemma 6.9

- $(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$  is a CCPo with least element  $f_\emptyset$  where  $\text{graph}(f_\emptyset) = \emptyset$ .
- In particular, for every chain  $S \subseteq \Sigma \dashrightarrow \Sigma$ ,

$$\text{graph} \left( \bigsqcup S \right) = \bigcup_{f \in S} \text{graph}(f).$$

Proof.

on the board

