
Semantics and Verification of Software

Lecture 6: Chain-Complete Partial Orders

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/


Outline

1 Repetition: Denotational Semantics

2 Chain-Complete Partial Orders

Semantics and Verification of Software Winter semester 2008/09 2



Additional Literature

G. Winskel: The Formal Semantics of Programming Languages,
The MIT Press, 1996
(Chapter 5; notations somewhat different)

H.R. Nielson, F. Nielson: Semantics with Applications: A Formal

Introduction, Wiley, 1992
(Chapter 4;
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html)

J.E. Stoy: Denotational Semantics: The Scott-Strachey Approach

to Programming Language Theory, The MIT Press, 1977
(very comprehensive but a bit outdated)

Semantics and Verification of Software Winter semester 2008/09 3

http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html


Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Winter semester 2008/09 4



Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 4.3)
Using the known parts of Def. 4.6, we obtain:

CJwhile b do cK

(∗)
= CJif b then (c;while b do c) else skipK

Def. 4.6
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 4.6
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Winter semester 2008/09 5



Characterization of fix(Φ) I

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1 Loop while b do c terminates after n iterations (n ∈ N)

=⇒ f0(σ0) = σn

2 Body c diverges in the nth iteration
=⇒ f0(σ0) = undefined

3 Loop while b do c diverges
=⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)

Not surprising since, e.g., the loop while true do skip yields for
every f : Σ 99K Σ:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

On the other hand, our operational understanding requires, for
every σ0 ∈ Σ,

CJwhile true do skipKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.

Semantics and Verification of Software Winter semester 2008/09 6



Making it Precise

To use fixpoint theory, the notion of “least defined” has to be made
precise.

Given f, g : Σ 99K Σ, let

f ⊑ g ⇐⇒ for every σ, σ′ ∈ Σ : f(σ) = σ′ =⇒ g(σ) = σ′

(g is “at least as defined” as f)

Equivalent to requiring

graph(f) ⊆ graph(g)

where

graph(h) := {(σ, σ′) | σ ∈ Σ, σ′ = h(σ) defined} ⊆ Σ × Σ

for every h : Σ 99K Σ

Semantics and Verification of Software Winter semester 2008/09 7



Characterization of fix(Φ) II

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Winter semester 2008/09 8



Outline

1 Repetition: Denotational Semantics

2 Chain-Complete Partial Orders

Semantics and Verification of Software Winter semester 2008/09 9



Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D,⊑) consists of a set D, called domain, and of
a relation ⊑ ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 ⊑ d1

transitivity: d1 ⊑ d2 and d2 ⊑ d3 =⇒ d1 ⊑ d3

antisymmetry: d1 ⊑ d2 and d2 ⊑ d1 =⇒ d1 = d2

It is called total if, in addition, always d1 ⊑ d2 or d2 ⊑ d1.

Example 6.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order (since not reflexive)

Semantics and Verification of Software Winter semester 2008/09 10



Application to fix(Φ) I

Lemma 6.3

(Σ 99K Σ,⊑) is a partial order.

Proof.

see Exercise 3

Semantics and Verification of Software Winter semester 2008/09 11



Chains and Least Upper Bounds

Definition 6.4 (Chain, (least) upper bound)

Let (D,⊑) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 ⊑ s2 or s2 ⊑ s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s ⊑ d for every

s ∈ S (notation: S ⊑ d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d ⊑ d′ for every upper bound d′ of S

(notation: d =
⊔

S).

Example 6.5

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2 {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.

Semantics and Verification of Software Winter semester 2008/09 12



Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example 6.7

1 (2N,⊆) is a CCPO with
⊔

S =
⋃

M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).

Semantics and Verification of Software Winter semester 2008/09 13



Least Elements in CCPOs

Corollary 6.8

Every CCPO has a least element
⊔

∅.

Proof.

Let (D,⊑) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.

Thus
⊔

∅ exists and is the least element of D.

Semantics and Verification of Software Winter semester 2008/09 14



Application to fix(Φ) II

Lemma 6.9

(Σ 99K Σ,⊑) is a CCPO with least element f∅ where graph(f∅) = ∅.

In particular, for every chain S ⊆ Σ 99K Σ,

graph
(

⊔

S
)

=
⋃

f∈S

graph(f).

Proof.

on the board

Semantics and Verification of Software Winter semester 2008/09 15


	Repetition: Denotational Semantics
	Chain-Complete Partial Orders

