Semantics and Verification of Software

Lecture 7: Continuous Functions and Fixpoint Theorem

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Repetition: Chain-Complete Partial Orders

Rm Semantics and fication of Software Winter semester 2008

Characterization of fix(®) IT

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idx)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain Y --+ X: chain-complete partial order

on function ®: continuity

Rm Semantics and Verification of Software Winter semester 2008,/09

Chain-Complete Partial Orders

Definition (Chain, (least) upper bound)

Let (D,C) be a partial order and S C D.

@ S is called a chain in D if, for every s1,s2 € S,
st L sporsy sy
(that is, S is a totally ordered subset of D).
© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d E d’ for every upper bound d’ of S
(notation: d =] |S).

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

m' Semantics and Verification of Software Winter semester 2008,/09 4

© Continuous Functions

Rm Semantics and Verification of Software inter semester 2008

Monotonicity I

Definition 7.1 (Monotonicity)

Let (D,C) and (D’,C) be partial orders, and let F': D — D'. F is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

d1 C d2 — F(d1> E/ F(dg)

m' Semantics and Verification of Software Winter semester 2008,/09 6

Monotonicity I

Definition 7.1 (Monotonicity)

Let (D,C) and (D’,C) be partial orders, and let F': D — D'. F is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

di Cdy = F(d1> E/ F(dg)

Interpretation: monotonic functions “preserve information”

m' Semantics and Verification of Software Winter semester 2008,/09 6

Monotonicity I

Definition 7.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let F': D — D'. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

di Cdy = F(dl) E/ F(dg)

Interpretation: monotonic functions “preserve information”

Q Let T:={SCN| S finite}. Then F1 : T - N:S— > _cnis
monotonic w.r.t. (2, C) and (N, <).

m Semantics and Verification of Software Winter semester 2008,/09 6

Monotonicity I

Definition 7.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let F': D — D'. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

di Cdy = F(dl) E/ F(dg)

Interpretation: monotonic functions “preserve information”

Q Let T:={SCN| S finite}. Then F1 : T - N:S— > _cnis
monotonic w.r.t. (2, C) and (N, <).

Q :2Y -2V 8+ N\ S is not monotonic w.r.t. (2, C)
(since, e.g., # C€ N but F5(0) = N € F5(N) = ().

m Semantics and Verification of Software Winter semester 2008,/09 6

Application to fix(®) I

Let b € BExp, c € Cmd, and @ : (X --») — (X --» X) with
®(f) := cond(B[[b], f o €[c],idx). Then ® is monotonic w.r.t.
(E == E’ E)

m' Semantics and Verification of Software Winter semester 2008,/09 7

Application to fix(®) I

Let b € BExp, c € Cmd, and @ : (X --») — (X --» X) with
®(f) := cond(B[[b], f o €[c],idx). Then ® is monotonic w.r.t.
(E == E’ E)

on the board O l

m' Semantics and Verification of Software Winter semester 2008,/09 7

Monotonicity 11

The following lemma states how chains behave under montonic
functions.

Let (D,C) and (D',C") be CCPOs, F : D — D' monotonic, and S C D
a chain in D. Then:

Q F(S):={F(d)|de S} is a chain in D'.
Q |JF(S) T F(LUS).

m' Semantics and Verification of Software Winter semester 2008,/09 8

Monotonicity 11

The following lemma states how chains behave under montonic
functions.

Let (D,C) and (D',C") be CCPOs, F : D — D' monotonic, and S C D
a chain in D. Then:

Q F(S):={F(d)|de S} is a chain in D'.
Q |JF(S) T F(LUS).

on the board O l

m Semantics and Verification of Software Winter semester 2008,/09 8

Continuity

A function F' is continuous if applying F' and taking LUBs can be
exchanged

Definition 7.5 (Continuity)

Let (D,C) and (D',C') be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D’,C)) if, for every
non-empty chain S C D,

F (|_| s) = |F().

m' Semantics and Verification of Software Winter semester 2008,/09 9

Continuity

A function F' is continuous if applying F' and taking LUBs can be
exchanged

7

Definition

Let (D,C) and (D’,C') be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D’,C)) if, for every
non-empty chain S C D,

.5 (Continuity)

F (|_| s) = |F().

Lemma 7.6

Let b € BExp, ¢ € Cmd, and ®(f) := cond(B[b], f o €[c],idx). Then
is continuous w.r.t. (X --» X,).

| \

m' Semantics and Verification of Software Winter semester 2008,/09 9

Continuity

A function F' is continuous if applying F' and taking LUBs can be
exchanged

7

Definition

Let (D,C) and (D’,C') be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D’,C)) if, for every
non-empty chain S C D,

.5 (Continuity)

F (|_| s) =| |F(3).

Lemma 7.6

Let b € BExp, ¢ € Cmd, and ®(f) := cond(B[b], f o €[c],idx). Then
is continuous w.r.t. (X --» X,).

| \

4

on the board O
RWNTH

Semantics and Verification of Software Winter semester 2008,/09 9

© The Fixpoint Theorem

Rm Semantics and Verification of Software ter semester 2008

The Fixpoint Theorem

Theorem 7.7 (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) = |_|{F" (L]0) |n €N}

18 the least fizpoint of F' where

F°(d) := d and F""'(d) := F(F"(d)).

m Semantics and Verification of Software Winter semester 2008,/09 11

The Fixpoint Theorem

Theorem 7.7 (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) = |_|{F" (L]0) |n €N}

1s the least fixpoint of F' where

F°(d) := d and F""'(d) := F(F"(d)).

on the board O

m' Semantics and Verification of Software Winter semester 2008,/09 11

Application to fix(®) II

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Corollary 7.8

Let b € BExp, ¢c € Cmd, and ®(f) := cond(B[b], f o €[c],ids). Then

graph(fix(® U graph(®"(fy))
neN

m' Semantics and Verification of Software Winter semester 2008,/09 12

Application to fix(®) II

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Corollary 7.8
Let b € BExp, ¢c € Cmd, and ®(f) := cond(B[b], f o €[c],ids). Then

graph(fix(®)) = | | graph(®"(fy))
neN

Proof.
Using
o Lemma 6.9 ((X --» 3,C) CCPO with least element fj; LUB =
union of graphs)

o Lemma 7.6 ($ continuous)

@ Theorem 7.7 (Fixpoint Theorem)

N

m' Semantics and Verification of Software Winter semester 2008,/09 12

@ An Example

Rm Semantics and Verification of Software inter semester 2008/

Denotational Semantics of Factorial Program I

Example 7.9 (Factorial program)

o Let ¢ € Umd be given by
y:=1; while —(x=1) do (y:=y*x; x:=x-1)

m Semantics and Verification of Software Winter semester 2008,/09 14

Denotational Semantics of Factorial Program I

Example 7.9 (Factorial program)

o Let ¢ € Umd be given by
y:=1; while —(x=1) do (y:=y*x; x:=x-1)
o For every initial state og € 3, Def. 4.6 yields:
€[c](o0) = fix(®)(o1)
where 01 := og[y — 1] and, for every f: ¥ --» ¥ and 0 € X,
D(f)(0) = cond(B[~(x=1)], f o €[y :=y*x; x:=x-1],idx)(0)
o ifo(x)=1
~) f(¢!) otherwise
with o/ := oy — o(y) x 0(x),x — o(x) — 1].

m' Semantics and Verification of Software Winter semester 2008,/09 14

Denotational Semantics of Factorial Program I

Example 7.9 (Factorial program)

o Let ¢ € Umd be given by
y:=1; while —(x=1) do (y:=y*x; x:=x-1)
o For every initial state og € 3, Def. 4.6 yields:
€[c](o0) = fix(®)(o1)
where 01 := og[y — 1] and, for every f: ¥ --» ¥ and 0 € X,
®(f)(0) = cond(B[~(x=1)], f o €y:=y*x; x:=x-1],idy)(0)
o ifo(x)=1
~) f(¢!) otherwise
with o/ := oy — o(y) x 0(x),x — o(x) — 1].
o Approximations of least fixpoint of ® according to Theorem 7.7:
fix(®) = L{®"(fo) | n € N}
(where graph(fy) = 0)

m' Semantics and Verification of Software Winter semester 2008,/09 14

Denotational Semantics of Factorial Program II

Example 7.9 (Factorial program; continued)

2°(fp)(0)

fo(o)
undefined

fo(o)

Winter semester 2008,/09 15

Semantics and Verification of Software

Denotational Semantics of Factorial Program II

Example 7.9 (Factorial program; continued)

folo) == 2°(fp)(0)

= fo(o)
= undefined
fi(o) = @'(fy)(0)
= ©(fo)(0)
o ifo(x) =1
fo(o!) otherwise
_ EJ ifo(x)=1
undefined otherwise

Winter semester 2008,/09

Semantics and Verification of Software

Denotational Semantics of Factorial Program II

Example 7.9 (Factorial program; continued)

falo) = g?}fg)g(g)
= o
fol@) == 2°(fy) (o) (o ite(m) =1
= fo(o) - {fl(a’) otherwise
= undefined o if o(x) = 1
= {a’ if 0(x) #1 and o'(x) =1
fi if o(x ao'(x
f1(0) = BL(f)(0) (tjmde ned ;f ngg 7:é % and o'(x) # 1
= ®(fo)(o) = {a' if o(x) =2
_Je if o(x) =1 undefined if o(x) # 1 and o(x) # 2
fo(c") otherwise o if o(x) =1
o ifo(x)=1 oly— 2x0(y), ifo(x)=2
undefined otherwise = x — 1]
undefined if o(x) #1
and o(x) # 2

m' Semantics and Verification of Software Winter semester 2008,/09 15

Denotational Semantics of Factorial Program III

Example 7.9 (Factorial program; continued)

f3(o) = ®3(fy)(0)

= O(f2)(o

_Jo ifo(x)=1

- { fa(o’) otherwise
o ifo(x) =1

_) if 0(x) #1 and o'(x) =1
dly—2*d(y),x— 1] if o(x) # 1 and a(x) =2
undefined if 0(x) # 1 and ¢/(x) # 1 and o'(x) # 2
o ifo(x) =1

e e if o(x) =2

T oy 2%0'(y),x— 1] if o(x) =3
undefined if o(x) ¢ {1,2,3}
o ifo(x)=1

_ Jolym2x0(y),x—1] ifa(x):2
oly—3x2x0(y),x— 1] %fa(x)=3
undefined if o(x) ¢ {1,2,3}

m' Semantics and Verification of Software Winter semester 2008,/09 16

Denotational Semantics of Factorial Program IV

Example 7.9 (Factorial program; continued)

@ n-th approximation:

i

XI—>1]
if o(x) ¢ {1,...,n}
Nxo(y),x — 1] iflgo*(x)g

(1

y»—>a x(o(x) = 1) x...x2x0(y), ifl1<o(x)<n
undefined

{undeﬁned if o(x) ¢ {1,...,n}

m' Semantics and Verification of Software Winter semester 2008,/09 17

Denotational Semantics of Factorial Program IV

Example 7.9 (Factorial program; continued)

@ n-th approximation:

o
- y»—>c1f] x(o(x) = 1) x...x2x0(y), ifl1<o(x)<n
N undeﬁned if o(x) ¢ {1,...,n}
. x))! *xo(y),x — 1] iflga(x)gn
- undeﬁned if o(x) ¢ {1,...,n}
o Fixpoint:
elelion) = ix@)(on) = { g e 1

m' Semantics and Verification of Software Winter semester 2008,/09 17

© Summary: Denotational Semantics

Rm Semantics and Verification of Software ter semester 2008

Summary: Denotational Semantics

@ Semantic model: partial state transformations (X --» X)

Rm Semantics and Verification of Software Winter semester 2008,/09 19

Summary: Denotational Semantics

@ Semantic model: partial state transformations (X --» X)

o Compositional definition of functional €[.] : Cmd — (£ --» X)

Rm Semantics and Verification of Software Winter semester 2008,/09 19

Summary: Denotational Semantics

@ Semantic model: partial state transformations (X --» X)
o Compositional definition of functional €[.] : Cmd — (£ --» X)

o Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Rm Semantics and Verification of Software Winter semester 2008,/09 19

Summary: Denotational Semantics

Semantic model: partial state transformations (X --» 3)
Compositional definition of functional €[.] : Cmd — (¥ --» X)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Rm Semantics and Verification of Software Winter semester 2008,/09

	Repetition: Chain-Complete Partial Orders
	Continuous Functions
	The Fixpoint Theorem
	An Example
	Summary: Denotational Semantics

