
Semantics and Verification of Software

Lecture 7: Continuous Functions and Fixpoint Theorem

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/


Outline

1 Repetition: Chain-Complete Partial Orders

2 Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Winter semester 2008/09 2



Characterization of fix(Φ) II

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Winter semester 2008/09 3



Chain-Complete Partial Orders

Definition (Chain, (least) upper bound)

Let (D,⊑) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 ⊑ s2 or s2 ⊑ s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s ⊑ d for every

s ∈ S (notation: S ⊑ d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d ⊑ d′ for every upper bound d′ of S
(notation: d =

⊔

S).

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Semantics and Verification of Software Winter semester 2008/09 4



Outline

1 Repetition: Chain-Complete Partial Orders

2 Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Winter semester 2008/09 5



Monotonicity I

Definition 7.1 (Monotonicity)

Let (D,⊑) and (D′,⊑′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,⊑) and (D′,⊑′)) if, for every d1, d2 ∈ D,

d1 ⊑ d2 =⇒ F (d1) ⊑
′ F (d2).

Semantics and Verification of Software Winter semester 2008/09 6



Monotonicity I

Definition 7.1 (Monotonicity)

Let (D,⊑) and (D′,⊑′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,⊑) and (D′,⊑′)) if, for every d1, d2 ∈ D,

d1 ⊑ d2 =⇒ F (d1) ⊑
′ F (d2).

Interpretation: monotonic functions “preserve information”

Semantics and Verification of Software Winter semester 2008/09 6



Monotonicity I

Definition 7.1 (Monotonicity)

Let (D,⊑) and (D′,⊑′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,⊑) and (D′,⊑′)) if, for every d1, d2 ∈ D,

d1 ⊑ d2 =⇒ F (d1) ⊑
′ F (d2).

Interpretation: monotonic functions “preserve information”

Example 7.2

1 Let T := {S ⊆ N | S finite}. Then F1 : T → N : S 7→
∑

n∈S
n is

monotonic w.r.t. (2N,⊆) and (N,≤).

Semantics and Verification of Software Winter semester 2008/09 6



Monotonicity I

Definition 7.1 (Monotonicity)

Let (D,⊑) and (D′,⊑′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,⊑) and (D′,⊑′)) if, for every d1, d2 ∈ D,

d1 ⊑ d2 =⇒ F (d1) ⊑
′ F (d2).

Interpretation: monotonic functions “preserve information”

Example 7.2

1 Let T := {S ⊆ N | S finite}. Then F1 : T → N : S 7→
∑

n∈S
n is

monotonic w.r.t. (2N,⊆) and (N,≤).

2 F2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but F2(∅) = N 6⊆ F2(N) = ∅).

Semantics and Verification of Software Winter semester 2008/09 6



Application to fix(Φ) I

Lemma 7.3

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ 99K Σ) → (Σ 99K Σ) with

Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t.

(Σ 99K Σ,⊑).

Semantics and Verification of Software Winter semester 2008/09 7



Application to fix(Φ) I

Lemma 7.3

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ 99K Σ) → (Σ 99K Σ) with

Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t.

(Σ 99K Σ,⊑).

Proof.

on the board

Semantics and Verification of Software Winter semester 2008/09 7



Monotonicity II

The following lemma states how chains behave under montonic
functions.

Lemma 7.4

Let (D,⊑) and (D′,⊑′) be CCPOs, F : D → D′ monotonic, and S ⊆ D
a chain in D. Then:

1 F (S) := {F (d) | d ∈ S} is a chain in D′.

2
⊔

F (S) ⊑′ F (
⊔

S).

Semantics and Verification of Software Winter semester 2008/09 8



Monotonicity II

The following lemma states how chains behave under montonic
functions.

Lemma 7.4

Let (D,⊑) and (D′,⊑′) be CCPOs, F : D → D′ monotonic, and S ⊆ D
a chain in D. Then:

1 F (S) := {F (d) | d ∈ S} is a chain in D′.

2
⊔

F (S) ⊑′ F (
⊔

S).

Proof.

on the board

Semantics and Verification of Software Winter semester 2008/09 8



Continuity

A function F is continuous if applying F and taking LUBs can be
exchanged

Definition 7.5 (Continuity)

Let (D,⊑) and (D′,⊑′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,⊑) and (D′,⊑′)) if, for every
non-empty chain S ⊆ D,

F
(

⊔

S
)

=
⊔

F (S).

Semantics and Verification of Software Winter semester 2008/09 9



Continuity

A function F is continuous if applying F and taking LUBs can be
exchanged

Definition 7.5 (Continuity)

Let (D,⊑) and (D′,⊑′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,⊑) and (D′,⊑′)) if, for every
non-empty chain S ⊆ D,

F
(

⊔

S
)

=
⊔

F (S).

Lemma 7.6

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ 99K Σ,⊑).

Semantics and Verification of Software Winter semester 2008/09 9



Continuity

A function F is continuous if applying F and taking LUBs can be
exchanged

Definition 7.5 (Continuity)

Let (D,⊑) and (D′,⊑′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,⊑) and (D′,⊑′)) if, for every
non-empty chain S ⊆ D,

F
(

⊔

S
)

=
⊔

F (S).

Lemma 7.6

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ 99K Σ,⊑).

Proof.

on the board

Semantics and Verification of Software Winter semester 2008/09 9



Outline

1 Repetition: Chain-Complete Partial Orders

2 Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Winter semester 2008/09 10



The Fixpoint Theorem

Theorem 7.7 (Fixpoint Theorem by Tarski and Knaster)

Let (D,⊑) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{

Fn

(

⊔

∅
)

| n ∈ N

}

is the least fixpoint of F where

F 0(d) := d and Fn+1(d) := F (Fn(d)).

Semantics and Verification of Software Winter semester 2008/09 11



The Fixpoint Theorem

Theorem 7.7 (Fixpoint Theorem by Tarski and Knaster)

Let (D,⊑) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{

Fn

(

⊔

∅
)

| n ∈ N

}

is the least fixpoint of F where

F 0(d) := d and Fn+1(d) := F (Fn(d)).

Proof.

on the board

Semantics and Verification of Software Winter semester 2008/09 11



Application to fix(Φ) II

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary 7.8

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃

n∈N

graph(Φn(f∅))

Semantics and Verification of Software Winter semester 2008/09 12



Application to fix(Φ) II

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary 7.8

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃

n∈N

graph(Φn(f∅))

Proof.

Using

Lemma 6.9 ((Σ 99K Σ,⊑) CCPO with least element f∅; LUB =
union of graphs)

Lemma 7.6 (Φ continuous)

Theorem 7.7 (Fixpoint Theorem)

Semantics and Verification of Software Winter semester 2008/09 12



Outline

1 Repetition: Chain-Complete Partial Orders

2 Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Winter semester 2008/09 13



Denotational Semantics of Factorial Program I

Example 7.9 (Factorial program)

Let c ∈ Cmd be given by
y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)

Semantics and Verification of Software Winter semester 2008/09 14



Denotational Semantics of Factorial Program I

Example 7.9 (Factorial program)

Let c ∈ Cmd be given by
y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)

For every initial state σ0 ∈ Σ, Def. 4.6 yields:
CJcK(σ0) = fix(Φ)(σ1)

where σ1 := σ0[y 7→ 1] and, for every f : Σ 99K Σ and σ ∈ Σ,
Φ(f)(σ) = cond(BJ¬(x=1)K, f ◦ CJy:=y*x; x:=x-1K, idΣ)(σ)

=

{

σ if σ(x) = 1
f(σ′) otherwise

with σ′ := σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x) − 1].

Semantics and Verification of Software Winter semester 2008/09 14



Denotational Semantics of Factorial Program I

Example 7.9 (Factorial program)

Let c ∈ Cmd be given by
y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)

For every initial state σ0 ∈ Σ, Def. 4.6 yields:
CJcK(σ0) = fix(Φ)(σ1)

where σ1 := σ0[y 7→ 1] and, for every f : Σ 99K Σ and σ ∈ Σ,
Φ(f)(σ) = cond(BJ¬(x=1)K, f ◦ CJy:=y*x; x:=x-1K, idΣ)(σ)

=

{

σ if σ(x) = 1
f(σ′) otherwise

with σ′ := σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x) − 1].

Approximations of least fixpoint of Φ according to Theorem 7.7:
fix(Φ) =

⊔

{Φn(f∅) | n ∈ N}
(where graph(f∅) = ∅)

Semantics and Verification of Software Winter semester 2008/09 14



Denotational Semantics of Factorial Program II

Example 7.9 (Factorial program; continued)

f0(σ) := Φ0(f∅)(σ)
= f∅(σ)
= undefined

Semantics and Verification of Software Winter semester 2008/09 15



Denotational Semantics of Factorial Program II

Example 7.9 (Factorial program; continued)

f0(σ) := Φ0(f∅)(σ)
= f∅(σ)
= undefined

f1(σ) := Φ1(f∅)(σ)
= Φ(f0)(σ)

=

{

σ if σ(x) = 1
f0(σ

′) otherwise

=

{

σ if σ(x) = 1
undefined otherwise

Semantics and Verification of Software Winter semester 2008/09 15



Denotational Semantics of Factorial Program II

Example 7.9 (Factorial program; continued)

f0(σ) := Φ0(f∅)(σ)
= f∅(σ)
= undefined

f1(σ) := Φ1(f∅)(σ)
= Φ(f0)(σ)

=

{

σ if σ(x) = 1
f0(σ

′) otherwise

=

{

σ if σ(x) = 1
undefined otherwise

f2(σ) := Φ2(f∅)(σ)
= Φ(f1)(σ)

=

{

σ if σ(x) = 1
f1(σ

′) otherwise

=

{

σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
undefined if σ(x) 6= 1 and σ′(x) 6= 1

=

{

σ if σ(x) = 1
σ′ if σ(x) = 2
undefined if σ(x) 6= 1 and σ(x) 6= 2

=



















σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y),
x 7→ 1]

if σ(x) = 2

undefined if σ(x) 6= 1
and σ(x) 6= 2

Semantics and Verification of Software Winter semester 2008/09 15



Denotational Semantics of Factorial Program III

Example 7.9 (Factorial program; continued)

f3(σ) := Φ3(f∅)(σ)
= Φ(f2)(σ)

=

{

σ if σ(x) = 1
f2(σ

′) otherwise

=











σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) 6= 1 and σ′(x) = 2
undefined if σ(x) 6= 1 and σ′(x) 6= 1 and σ′(x) 6= 2

=











σ if σ(x) = 1
σ′ if σ(x) = 2
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}

=











σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y), x 7→ 1] if σ(x) = 2
σ[y 7→ 3 ∗ 2 ∗ σ(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}

Semantics and Verification of Software Winter semester 2008/09 16



Denotational Semantics of Factorial Program IV

Example 7.9 (Factorial program; continued)

n-th approximation:

fn(σ)
:= Φn(f∅)(σ)

=







σ[y 7→ σ(x) ∗ (σ(x) − 1) ∗ . . . ∗ 2 ∗ σ(y),
x 7→ 1]

if 1 ≤ σ(x) ≤ n

undefined if σ(x) /∈ {1, . . . , n}

=

{

σ[y 7→ (σ(x))! ∗ σ(y), x 7→ 1] if 1 ≤ σ(x) ≤ n
undefined if σ(x) /∈ {1, . . . , n}

Semantics and Verification of Software Winter semester 2008/09 17



Denotational Semantics of Factorial Program IV

Example 7.9 (Factorial program; continued)

n-th approximation:

fn(σ)
:= Φn(f∅)(σ)

=







σ[y 7→ σ(x) ∗ (σ(x) − 1) ∗ . . . ∗ 2 ∗ σ(y),
x 7→ 1]

if 1 ≤ σ(x) ≤ n

undefined if σ(x) /∈ {1, . . . , n}

=

{

σ[y 7→ (σ(x))! ∗ σ(y), x 7→ 1] if 1 ≤ σ(x) ≤ n
undefined if σ(x) /∈ {1, . . . , n}

Fixpoint:

CJcK(σ0) = fix(Φ)(σ1) =

{

σ[y 7→ (σ(x))!, x 7→ 1] if σ(x) ≥ 1
undefined otherwise

Semantics and Verification of Software Winter semester 2008/09 17



Outline

1 Repetition: Chain-Complete Partial Orders

2 Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Winter semester 2008/09 18



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Semantics and Verification of Software Winter semester 2008/09 19



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Semantics and Verification of Software Winter semester 2008/09 19



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Semantics and Verification of Software Winter semester 2008/09 19



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Semantics and Verification of Software Winter semester 2008/09 19


	Repetition: Chain-Complete Partial Orders
	Continuous Functions
	The Fixpoint Theorem
	An Example
	Summary: Denotational Semantics

