
Semantics and Verification of Software
Lecture 8: Operational/Denotational/Axiomatic Semantics

of WHILE

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Repetition: Operational/Denotational Semantics

2 Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

Semantics and Verification of Software Winter semester 2008/09 3

Operational/Denotational Semantics

Definition (Operational semantics of statements)

Execution relation 〈c, σ〉 → σ′:

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c, σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Definition (Denotational semantics of statements)

Denotational semantic functional for statements CJ.K : Cmd → (Σ 99K Σ):
CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K, CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
Semantics and Verification of Software Winter semester 2008/09 4

Outline

1 Repetition: Operational/Denotational Semantics

2 Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

Semantics and Verification of Software Winter semester 2008/09 5

Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Semantics and Verification of Software Winter semester 2008/09 6

Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem 8.1 (Coincidence Theorem)

For every c ∈ Cmd,

OJcK = CJcK,

i.e., OJ.K = CJ.K.

Semantics and Verification of Software Winter semester 2008/09 6

Equivalence of Semantics II

The proof of Theorem 8.1 employs the following auxiliary propositions:

Lemma 8.2
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z.

Semantics and Verification of Software Winter semester 2008/09 7

Equivalence of Semantics II

The proof of Theorem 8.1 employs the following auxiliary propositions:

Lemma 8.2
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z.

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Semantics and Verification of Software Winter semester 2008/09 7

Equivalence of Semantics II

The proof of Theorem 8.1 employs the following auxiliary propositions:

Lemma 8.2
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z.

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 see Exercise 3.1 (structural induction on a)

2 analogously (structural induction on b)

Semantics and Verification of Software Winter semester 2008/09 7

Equivalence of Semantics III

Proof (Theorem 8.1).

We have to show that

〈c, σ〉 → σ′ ⇐⇒ CJcK(σ) = σ′

⇒ by structural induction over the derivation tree of
〈c, σ〉 → σ′

⇐ by structural induction over c (with a nested complete
induction over fixpoint index n)

(on the board)

Semantics and Verification of Software Winter semester 2008/09 8

Outline

1 Repetition: Operational/Denotational Semantics

2 Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

Semantics and Verification of Software Winter semester 2008/09 9

The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

Semantics and Verification of Software Winter semester 2008/09 10

The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c, σ(s) =
∑σ(N)

i=1 i?

Semantics and Verification of Software Winter semester 2008/09 10

The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c, σ(s) =
∑σ(N)

i=1 i?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Semantics and Verification of Software Winter semester 2008/09 10

The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c, σ(s) =
∑σ(N)

i=1 i?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Winter semester 2008/09 10

The Axiomatic Approach II

Example 8.1 (continued)

Obviously c satisfies the following assertions (after execution of the
respective statement):

s:=0;
{s = 0}
n:=1;
{s = 0 ∧ n = 1}
while ¬(n>N) do (s:=s+n; n:=n+1)

{s =
∑N

i=1 i ∧ n > N}

where, e.g., “s = 0” means “σ(s) = 0 in the current state σ ∈ Σ”

Semantics and Verification of Software Winter semester 2008/09 11

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Semantics and Verification of Software Winter semester 2008/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition

Semantics and Verification of Software Winter semester 2008/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?

Semantics and Verification of Software Winter semester 2008/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
i=1 i is

satisfied

Semantics and Verification of Software Winter semester 2008/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
i=1 i is

satisfied
Corresponding proof system employs partial correctness properties
of the form {A} c {B} with assertions A,B and c ∈ Cmd

Semantics and Verification of Software Winter semester 2008/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
i=1 i is

satisfied
Corresponding proof system employs partial correctness properties
of the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of property {A} c {B}

For all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

Semantics and Verification of Software Winter semester 2008/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
i=1 i is

satisfied
Corresponding proof system employs partial correctness properties
of the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of property {A} c {B}

For all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

Semantics and Verification of Software Winter semester 2008/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
i=1 i is

satisfied
Corresponding proof system employs partial correctness properties
of the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of property {A} c {B}

For all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property

Semantics and Verification of Software Winter semester 2008/09 12

Outline

1 Repetition: Operational/Denotational Semantics

2 Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

Semantics and Verification of Software Winter semester 2008/09 13

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Semantics and Verification of Software Winter semester 2008/09 14

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i

Arithmetic expressions
with log. var. LExp a

Assertions Assn A,B,C

Semantics and Verification of Software Winter semester 2008/09 14

Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Semantics and Verification of Software Winter semester 2008/09 15

Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Abbreviations:

A1 =⇒ A2 := ¬A1 ∨ A2

∃i.A := ¬(∀i.¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...

Semantics and Verification of Software Winter semester 2008/09 15

	Repetition: Operational/Denotational Semantics
	Equivalence of Operational and Denotational Semantics
	The Axiomatic Approach
	The Assertion Language

