Semantics and Verification of Software

Lecture 8: Operational/Denotational/Axiomatic Semantics

of WHILE

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

f»'Esser?:uﬁH“él ()
AZE U-‘J"; 19
*Wettkampf:#1=*Preis iPhone 3G 16GB

@ Repetition: Operational /Denotational Semantics

Rm Semantics and Verification of Software ter semester 2008

Operational /Denotational Semantics

Definition (Operational semantics of statements)

Execution relation {(c, o) — o:

kip) ————
(slip) (skip,0) — o

<01,0'> —a’ <027 0—,> — o’

(a,0) — 2

(asgn) <

z :=a,0) — o[z — 2]
(b,0) — true {c1,0) — o’

(seq) (if-t)

(if b then c; else c2,0) — o’
(b, o) — false
- (wh-f)

(b,0) — true (c,0) — o' (while b do c¢,0’) — o

(c1;c0,0) — o
(b,0) — false (c2,0) — o’

(if-f)

(if b then c; else cz,0) — 0 (while b do ¢,0) — o

(wh-t)

(while b do ¢,0) — 0"

Definition (Denotational semantics of statements)

Denotational semantic functional for statements €[.] : Cmd — (X --» X):

¢[skip] := ids
Cz :=afo := o[z — A[a]o]
Cleise2] = Clez] o €fea]

C[if b then c; else c2] := cond(B[b], €[c1], €[c2])
C[while b do c] := fix(P)
where @ : (X --» X) — (X --» X) : f — cond(B[b], f o €[], ids)
m Semantics and Verification of Software Winter semester 2008,/09

© Equivalence of Operational and Denotational Semantics

Rm Semantics and fication of Software Winter semester 2008

Equivalence of Semantics 1

Remember: in Def. 4.1, O[.] : Cmd — (£ --» X) was given by

Olc] (o) =0’ < {c,0) — o’

Rm Semantics and Verification of Software Winter semester 2008,/09 6

Equivalence of Semantics 1

Remember: in Def. 4.1, O[.] : Cmd — (£ --» X) was given by

Olc] (o) =0’ < {c,0) — o’

Theorem 8.1 (Coincidence Theorem)

For every c € Cmd,
Olc] = €[],

ie., O] = €[].

m' Semantics and Verification of Software Winter semester 2008,/09

Equivalence of Semantics 11

The proof of Theorem 8.1 employs the following auxiliary propositions:

Lemma 8.2
Q For everya € AExp, 0 € X, and z € Z:

(a,0) = z <= WUa](0) = =.

Semantics and Verification of Software Winter semester 2008,/09

Equivalence of Semantics 11

The proof of Theorem 8.1 employs the following auxiliary propositions:

Lemma 8.2
Q For everya € AExp, 0 € X, and z € Z:

(a,0) = z <= WUa](0) = =.

Q For every b € BEzp, o € 3, and t € B:

(b,o) —t < Bb](0) =t.

Semantics and Verification of Software Winter semester 2008,/09

Equivalence of Semantics 11

The proof of Theorem 8.1 employs the following auxiliary propositions:

Lemma 8.2
Q For everya € AExp, 0 € X, and z € Z:

(a,0) = 2z <= Aa](o) = =.

© For everyb € BExp, o € 31, and t € B:

(b,0) =t = B[b](0) =t.

Q see Exercise 3.1 (structural induction on a)

© analogously (structural induction on b)

m' Semantics and Verification of Software Winter semester 2008,/09

Equivalence of Semantics 111

Proof (Theorem 8.1).
We have to show that

(c,0) = 0 < €[c](0c) =0’

= by structural induction over the derivation tree of
(c,0) — o’

< by structural induction over ¢ (with a nested complete
induction over fixpoint index n)

(on the board) O

Semantics and Verification of Software Winter semester 2008,/09 8

© The Axiomatic Approach

Rm Semantics and Verification of Software ter semester 2008

The Axiomatic Approach I

Example 8.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

m' Semantics and Verification of Software Winter semester 2008,/09 10

The Axiomatic Approach I

Example 8.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = Zf:(Nl) i?

m' Semantics and Verification of Software Winter semester 2008,/09 10

The Axiomatic Approach I

Example 8.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = Zf:(Nl) i?

@ “Running” ¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

m' Semantics and Verification of Software Winter semester 2008,/09 10

The Axiomatic Approach I

Example 8.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = Zf:(Nl) i?

@ “Running” ¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

o Wanted: a more abstract, “symbolic” way of reasoning

m' Semantics and Verification of Software Winter semester 2008,/09 10

The Axiomatic Approach II

Example 8.1 (continued)

Obviously c¢ satisfies the following assertions (after execution of the
respective statement):

s:=0;

{s =0}

n:=1;

{s=0An=1}

while —(n>N) do (s:=s+n; n:=n+1)

{s=Y1,iAn>N}

where, e.g., “s = 0” means “o(s) = 0 in the current state o € ¥”

m Semantics and Verification of Software Winter semester 2008,/09 11

The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)

Rm Semantics and Verification of Software Winter semester 2008,/09 12

The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
o Also, “n > N” follows directly from the loop’s execution condition

Rm Semantics and Verification of Software Winter semester 2008,/09 12

The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
o Also, “n > N” follows directly from the loop’s execution condition
o But how to obtain the final value of s?

Rm Semantics and Verification of Software Winter semester 2008,/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 07)

Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?;llz is
satisfied

¢ © ¢ ¢

Rm Semantics and Verification of Software Winter semester 2008,/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

¢ © ¢ ¢

Rm Semantics and Verification of Software Winter semester 2008,/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € 3, then ¢’ satisfies B.

m' Semantics and Verification of Software Winter semester 2008,/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € 3, then ¢’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate

m' Semantics and Verification of Software Winter semester 2008,/09 12

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € 3, then ¢’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate
o In particular,
{true} while true do skip {false}

is a valid property
m' Semantics and Verification of Software Winter semester 2008,/09 12

@ The Assertion Language

Rm Semantics and Verification of Software ter semester 2008

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Rm Semantics and Verification of Software Winter semester 2008,/09 14

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar 1
Arithmetic expressions
with log. var. LExp a
Assertions Assn A B,C

Rm Semantics and Verification of Software Winter semester 2008,/09 14

Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a:x=z|x|i|ar+a | a1-as | ai*as € LEzp
A=t ’ a1=as ’ a1>a2 ‘ —-A ‘ Al A Ag ‘ AV As ‘ Vi.A € Assn

m' Semantics and Verification of Software Winter semester 2008,/09 15

Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a:x=z|x|i|ar+a | a1-as | ai*as € LEzp
A=t ’ a1=as ’ a1>a2 ‘ —-A ‘ Al A Ag ‘ AV As ‘ Vi.A € Assn

Abbreviations:

Al = Ay = —A;V Ay
Ji. A = ~(Vi.nA)
a; > ag = a1>az V ai=as

m' Semantics and Verification of Software Winter semester 2008,/09

	Repetition: Operational/Denotational Semantics
	Equivalence of Operational and Denotational Semantics
	The Axiomatic Approach
	The Assertion Language

