Semantics and Verification of Software

Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008,/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

@ Repetition: The Axiomatic Approach

Rm Semantics and Verification of Software ter semester 2008

The Axiomatic Approach

Obviously c¢ satisfies the following assertions (after execution of the
respective statement):

s:=0;

{s =0}

n:=1;

{s=0An=1}

while —(n>N) do (s:=s+n; n:=n+1)

{s=>1 iAn>N}

where, e.g., “s = 0” means “o(s) = 0 in the current state o € X”

Semantics and Verification of Software Winter semester 2008,/09

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar 1
Arithmetic expressions
with log. var. LExp a
Assertions Assn A B,C

Rm Semantics and Verification of Software Winter semester 2008,/09

Syntax of Assertion Language II

Definition (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a:=z|xl|il|ar+as | ar-ag | ar*az € LEzp
A=t | a1=a9 | a1>a9 | -A | Al N Ay | A1V Ay | Vi.A € Assn

Abbreviations:

Al = Ay := A1V Ay
Ji.A = —\(Vi.—!A)
a1 > a9 = ai>as V ai=ay

m' Semantics and Verification of Software Winter semester 2008,/09

© Semantics of Assertions

Rm Semantics and Verification of Software ter semester 2008

Semantics of LFxp

The semantics now additionally depends on values of logical variables:

Definition 9.1 (Semantics of LEzp)

An interpretation is an element of the set
Int:={I|I:LVar — Z}.
The value of an arithmetic expressions with logical variables is given by
the functional
L[] : LEzp — (Int — (¥ — Z))

where

Llz]lo =z Llaitaz]lo = Llai]lo + L[az]Io

Llz]lo := o(x) Llai-az]lo = Llai]lo — L[az]Io
Lli]lo = I(i) Llai*as]Io = Llai]lo * Llaz]Io

m Semantics and Verification of Software Winter semester 2008,/09 7

Semantics of LFxp

The semantics now additionally depends on values of logical variables:

Definition 9.1 (Semantics of LEzp)

An interpretation is an element of the set
Int:={I|I:LVar — Z}.
The value of an arithmetic expressions with logical variables is given by
the functional
L[.]: LEzp — (Int — (£ — Z))

where

Llz]Io := 2 Llai+as]lo = Lai]lo + Laz]lo

Llz]Io := o(x) Llai-az]lo = L]ai]lo — Laz]lo

Lli]lo = 1(7) Llai*as]Io = Llai]lo * Llaz]Io

Def. 4.4 (denotational semantics of arithmetic expressions) implies:

Corollary 9.2

For every a € AExp (without logical variables), I € Int, and o € X:
Lla]lo = Afa]o.

m' Semantics and Verification of Software Winter semester 2008,/09

Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

Rm Semantics and Verification of Software Winter semester 2008,/09

Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

@ Non-terminating computations captured by undefined state L:

S =xu{l}

Rm Semantics and Verification of Software Winter semester 2008,/09

Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

@ Non-terminating computations captured by undefined state L:

S =xu{l}

@ Modification of interpretations (in analogy to program states):

Ifi = 2](5) :

z if j=1
I(j) otherwise

Rm Semantics and Verification of Software Winter semester 2008,/09

Semantics of Assertions II

Reminder:

A=t | a1=ay | a1>a9 ‘ -A ‘ Al N Ay ‘ A1V Ay ‘ Vi.A € Assn

Definition 9.3 (Semantics of assertions)

Let A € Assn, o0 € ¥, and I € Int. The relation “o satisfies A in [”
(notation: o =! A) is inductively defined by:

o =l true

o =l aj=as if L[a1]lo = Llaz]lo

o = ar>as if Llai]lo > Llaz]lo

o=l -A if not o =1 A

o):I A1 NAy ifo):I A and o):I As

o ':I A1 VA ifo ':I A or o):I As

o = vi.A if o =102 A for every z € Z

1LE A
Furthermore “o satisfies A” (0 |= A) if o =1 A for every interpretation
I € Int, and A is called valid (| A) if 0 = A for every state o € X.

m' Semantics and Verification of Software Winter semester 2008,/09 9

Semantics of Assertions III

The following assertion expresses that, in the current state o € 3, o(y)
is the greatest divisor of o(x):

(Fii > 1ANixy=2) AVjVEk.(j > 1A jxk =2 = k <y)

m' Semantics and Verification of Software Winter semester 2008,/09 10

Semantics of Assertions III

The following assertion expresses that, in the current state o € 3, o(y)
is the greatest divisor of o(x):

(Fii > 1ANixy=2) AVjVEk.(j > 1A jxk =2 = k <y)

In analogy to Corollary 9.2, Def. 4.5 (denotational semantics of
Boolean expressions) yields:

For every b € BExp (without logical variables), I € Int, and o € X:

o =1 b = B[b]o = true.

m Semantics and Verification of Software Winter semester 2008,/09 10

Semantics of Assertions IV

Definition 9.6 (Extension)
Let A € Assn and I € Int. The extension of A with respect to [is
given by

Al :={ocex, |oE" A}

Note that, for every A € Assn and I € Int, 1L € A”.

m' Semantics and Verification of Software Winter semester 2008,/09 11

Semantics of Assertions IV

Definition 9.6 (Extension)
Let A € Assn and I € Int. The extension of A with respect to [is
given by

Al :={ocex, |oE" A}

Note that, for every A € Assn and I € Int, 1L € A”.

For A := (Ji.ixi = z) and every I € Int,

Al ={1}Uu{oceX|o(x)c{0,1,4,9,...}}

m' Semantics and Verification of Software Winter semester 2008,/09

© Partial Correctness Properties

Rm Semantics and Verification of Software ter semester 2008

Partial Correctness Properties

Definition 9.8 (Partial correctness properties)

Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

m' Semantics and Verification of Software Winter semester 2008,/09 13

Partial Correctness Properties

Definition 9.8 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [€ Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).

m' Semantics and Verification of Software Winter semester 2008,/09 13

Partial Correctness Properties

Definition 9.8 (Partial correctness properties)

Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [€ Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € ¥ (or equivalently: €[c]JA! C BY).

m' Semantics and Verification of Software Winter semester 2008,/09 13

Partial Correctness Properties

Definition 9.8 (Partial correctness properties)

Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [€ Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € ¥ (or equivalently: €[c]JA! C BY).
o {A}c{B} is called valid (notation: |= {A}c{B}) if ! {A}c{B}
for every I € Int.

m' Semantics and Verification of Software Winter semester 2008,/09 13

@ A Valid Partial Correctness Property

Rm Semantics and Verification of Software ter semester 2008

A Valid Partial Correctness Property

Example 9.9
o Let x € Var and ¢ € LVar. We have to show:
E={i<x}x := x+1{i <x}

m Semantics and Verification of Software Winter semester 2008,/09 15

A Valid Partial Correctness Property

Example 9.9

o Let x € Var and ¢ € LVar. We have to show:
E={i<x}x := x+1{i <x}
o According to Def. 9.8, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € ¥ and I € Int

m' Semantics and Verification of Software Winter semester 2008,/09

A Valid Partial Correctness Property

Example 9.9

o Let x € Var and ¢ € LVar. We have to show:
E={i<x}x := x+1{i <x}
o According to Def. 9.8, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € ¥ and I € Int
o For 0 = L this is trivial. So let o € X:

o =l (i < %)

m' Semantics and Verification of Software Winter semester 2008,/09

A Valid Partial Correctness Property

Example 9.9

o Let x € Var and ¢ € LVar. We have to show:
E={i<x}x := x+1{i <x}
o According to Def. 9.8, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € ¥ and I € Int
o For 0 = L this is trivial. So let o € X:

Fetien
= L[i]lo < £[x]Ic (Def. 9.3)

m' Semantics and Verification of Software Winter semester 2008,/09

A Valid Partial Correctness Property

Example 9.9

o Let x € Var and ¢ € LVar. We have to show:
E={i<x}x := x+1{i <x}
o According to Def. 9.8, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € ¥ and I € Int
o For 0 = L this is trivial. So let o € X:

o =" (i < x)
= L[i]lo < £[x]Io (Def. 9.3)
— I(i) <o(x) (Def.9.1)

m' Semantics and Verification of Software Winter semester 2008,/09

A Valid Partial Correctness Property

Example 9.9

o Let x € Var and ¢ € LVar. We have to show:
E={i<x}x := x+1{i <x}
o According to Def. 9.8, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € ¥ and I € Int
o For 0 = L this is trivial. So let o € X:

o =" (i < x)

= L[i]lo < £[x]Ic (Def. 9.3)
= I(i) < o(x) (Def. 9.1)
= I(i) <o(x)+1

= (C[x := x+1]o)(x)

m' Semantics and Verification of Software Winter semester 2008,/09

A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 9.8, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € ¥ and I € Int
o For 0 = L this is trivial. So let o € X:

LiG=
LlilIo < L[x]Ic (Def. 9.3)
I(i) <o(x) (Def.9.1)
I(i) <o(x)+1

= (Cfx := x+1]o)(x)
Cx := x+1]o ! (i < x)

AN

Semantics and Verification of Software Winter semester 2008,/09

A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 9.8, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € ¥ and I € Int
o For 0 = L this is trivial. So let o € X:

LiG=
LlilIo < L[x]Ic (Def. 9.3)
I(i) <o(x) (Def.9.1)
I(i) <o(x)+1

= (Cfx := x+1]o)(x)
(’Zl[[x = x+1]o = (i < x)

I

Semantics and Verification of Software Winter semester 2008,/09

@ Proof Rules for Partial Correctness

Rm Semantics and Verification of Software ter semester 2008

Hoare Logic 1

Goal: syntactic derivation of valid partial correctness properties

Definition 9.10 (Hoare Logic)

The Hoare rules are given by

P Ay sxip (4) S Al aly 2:=a (4]
(s04) {A}Cl {C}{C} 2 {B} {ANb}e1{B} {AA-b}e2{B}
d {A}c1;¢2{B} {A}if b then ¢; else ¢ {B}
(while) {Anb}e{A}

{A}while b do c{A A —b}
FA = A){4}c{B} (B = B)
{A}c{B}

A partial correctness property is provable (notation: - {4} c{B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(cons)

v

Here A[x +— a] denotes the syntactic replacement of every occurrence of
z by a in A.
RWNTH

Semantics and Verification of Software Winter semester 2008,/09 17

Hoare Logic 11

Proof of {A}y:=1;c{B} where
c:= (while —(x=1) do (y:=y*x; x:=x-1))
A= (x=1)
B := (y=1!)

(on the board)

Semantics and Verification of Software Winter semester 2008,/09 18

Hoare Logic 11

Example 9.11

Proof of {A}y:=1;c{B} where
c:= (while —(x=1) do (y:=y*x; x:=x-1))
A= (x=1)
B := (y=1!)

(on the board)

Structure of the proof:

(asgn) o (asgn) -
11 (seq) 12 13

(while) LU =

8 9
(seq) 2 : 3

Semantics and Verification of Software Winter semester 2008,/09 18

Hoare Logic III

Example 9.11 (continued)

Here the single propositions are given by:

QC:=(x>0 = yxxl=ilAi>x)
Q {A}y := 1;¢{B}

Q {4}y := 1{C}

(A = Cly—1))

—
Q
—
=D o
E 1

o

—((x = 1)) AC}

(=& =1))ANC = B)

-(x = DACHy := y*x; x := x-1{C}

(=(x = DAC = Clx— x-1,y — y*x|)
[x—x-1,y— y*x|}y = y*x; x := x-1{C}
C = O)

I Bt S
[x—x-1]}x := x-1{C}

=&
o
—~

6POFO6H00000060
TRTHTRTT

39

Semantics and Verification of Software Winter semester 2008,/09

	Repetition: The Axiomatic Approach
	Semantics of Assertions
	Partial Correctness Properties
	A Valid Partial Correctness Property
	Proof Rules for Partial Correctness

