
Semantics and Verification of Software

Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Winter semester 2008/09

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw08/

Outline

1 Repetition: The Axiomatic Approach

2 Semantics of Assertions

3 Partial Correctness Properties

4 A Valid Partial Correctness Property

5 Proof Rules for Partial Correctness

Semantics and Verification of Software Winter semester 2008/09 2

The Axiomatic Approach

Example

Obviously c satisfies the following assertions (after execution of the
respective statement):

s:=0;
{s = 0}
n:=1;
{s = 0 ∧ n = 1}
while ¬(n>N) do (s:=s+n; n:=n+1)

{s =
∑N

i=1 i ∧ n > N}

where, e.g., “s = 0” means “σ(s) = 0 in the current state σ ∈ Σ”

Semantics and Verification of Software Winter semester 2008/09 3

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i

Arithmetic expressions
with log. var. LExp a

Assertions Assn A,B,C

Semantics and Verification of Software Winter semester 2008/09 4

Syntax of Assertion Language II

Definition (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Abbreviations:

A1 =⇒ A2 := ¬A1 ∨ A2

∃i.A := ¬(∀i.¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...

Semantics and Verification of Software Winter semester 2008/09 5

Outline

1 Repetition: The Axiomatic Approach

2 Semantics of Assertions

3 Partial Correctness Properties

4 A Valid Partial Correctness Property

5 Proof Rules for Partial Correctness

Semantics and Verification of Software Winter semester 2008/09 6

Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 9.1 (Semantics of LExp)

An interpretation is an element of the set
Int := {I | I : LVar → Z}.

The value of an arithmetic expressions with logical variables is given by
the functional

LJ.K : LExp → (Int → (Σ → Z))
where

LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ
LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ
LJiKIσ := I(i) LJa1*a2KIσ := LJa1KIσ ∗ LJa2KIσ

Def. 4.4 (denotational semantics of arithmetic expressions) implies:

Corollary 9.2

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:
LJaKIσ = AJaKσ.

Semantics and Verification of Software Winter semester 2008/09 7

Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I[i 7→ z](j) :=

{

z if j = i
I(j) otherwise

Semantics and Verification of Software Winter semester 2008/09 8

Semantics of Assertions II

Reminder:
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Definition 9.3 (Semantics of assertions)

Let A ∈ Assn, σ ∈ Σ⊥, and I ∈ Int . The relation “σ satisfies A in I”
(notation: σ |=I A) is inductively defined by:

σ |=I
true

σ |=I a1=a2 if LJa1KIσ = LJa2KIσ

σ |=I a1>a2 if LJa1KIσ > LJa2KIσ

σ |=I ¬A if not σ |=I A

σ |=I A1 ∧ A2 if σ |=I A1 and σ |=I A2

σ |=I A1 ∨ A2 if σ |=I A1 or σ |=I A2

σ |=I ∀i.A if σ |=I[i7→z] A for every z ∈ Z

⊥ |=I A

Furthermore “σ satisfies A” (σ |= A) if σ |=I A for every interpretation
I ∈ Int , and A is called valid (|= A) if σ |= A for every state σ ∈ Σ.

Semantics and Verification of Software Winter semester 2008/09 9

Semantics of Assertions III

Example 9.4

The following assertion expresses that, in the current state σ ∈ Σ, σ(y)
is the greatest divisor of σ(x):

(∃i.i > 1 ∧ i*y = x) ∧ ∀j.∀k.(j > 1 ∧ j*k = x =⇒ k ≤ y)

In analogy to Corollary 9.2, Def. 4.5 (denotational semantics of
Boolean expressions) yields:

Corollary 9.5

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.

Semantics and Verification of Software Winter semester 2008/09 10

Semantics of Assertions IV

Definition 9.6 (Extension)

Let A ∈ Assn and I ∈ Int . The extension of A with respect to I is
given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Note that, for every A ∈ Assn and I ∈ Int , ⊥ ∈ AI .

Example 9.7

For A := (∃i.i*i = x) and every I ∈ Int ,

AI = {⊥} ∪ {σ ∈ Σ | σ(x) ∈ {0, 1, 4, 9, . . .}}

Semantics and Verification of Software Winter semester 2008/09 11

Outline

1 Repetition: The Axiomatic Approach

2 Semantics of Assertions

3 Partial Correctness Properties

4 A Valid Partial Correctness Property

5 Proof Rules for Partial Correctness

Semantics and Verification of Software Winter semester 2008/09 12

Partial Correctness Properties

Definition 9.8 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B

(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ BI).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ BI).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int .

Semantics and Verification of Software Winter semester 2008/09 13

Outline

1 Repetition: The Axiomatic Approach

2 Semantics of Assertions

3 Partial Correctness Properties

4 A Valid Partial Correctness Property

5 Proof Rules for Partial Correctness

Semantics and Verification of Software Winter semester 2008/09 14

A Valid Partial Correctness Property

Example 9.9

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

According to Def. 9.8, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:
σ |=I (i ≤ x)

=⇒ LJiKIσ ≤ LJxKIσ (Def. 9.3)
=⇒ I(i) ≤ σ(x) (Def. 9.1)
=⇒ I(i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
=⇒ CJx := x+1Kσ |=I (i < x)
=⇒ claim

Semantics and Verification of Software Winter semester 2008/09 15

Outline

1 Repetition: The Axiomatic Approach

2 Semantics of Assertions

3 Partial Correctness Properties

4 A Valid Partial Correctness Property

5 Proof Rules for Partial Correctness

Semantics and Verification of Software Winter semester 2008/09 16

Hoare Logic I

Goal: syntactic derivation of valid partial correctness properties

Definition 9.10 (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]}x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}

{A} c1;c2 {B}
(if)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}

{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ⊢ {A} c {B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of
x by a in A.

Semantics and Verification of Software Winter semester 2008/09 17

Hoare Logic II

Example 9.11

Proof of {A} y:=1;c {B} where
c := (while ¬(x=1) do (y:=y*x; x:=x-1))
A := (x = i)
B := (y = i!)

(on the board)

Structure of the proof:

(seq)
(cons) 4

(asgn)
5 6

2
(cons) 7

(while)
(cons) 11

(seq)
(asgn)

14
(asgn)

15
12 13

10
8 9

3
1

Semantics and Verification of Software Winter semester 2008/09 18

Hoare Logic III

Example 9.11 (continued)

Here the single propositions are given by:

0 C := (x > 0 =⇒ y ∗ x! = i! ∧ i ≥ x)
1 {A} y := 1;c {B}
2 {A} y := 1 {C}
3 {C} c {B}
4 |= (A =⇒ C[y 7→ 1])
5 {C[y 7→ 1]} y := 1 {C}
6 |= (C =⇒ C)
7 |= (C =⇒ C)
8 {C} c {¬(¬(x = 1)) ∧ C}
9 |= (¬(¬(x = 1)) ∧ C =⇒ B)
10 {¬(x = 1) ∧ C} y := y*x; x := x-1 {C}
11 |= (¬(x = 1) ∧ C =⇒ C[x 7→ x-1, y 7→ y*x])
12 {C[x 7→ x-1, y 7→ y*x]} y := y*x; x := x-1{C}
13 |= (C =⇒ C)
14 {C[x 7→ x-1, y 7→ y*x]} y := y*x{C[x 7→ x-1]}
15 {C[x 7→ x-1]} x := x-1 {C}

Semantics and Verification of Software Winter semester 2008/09 19

	Repetition: The Axiomatic Approach
	Semantics of Assertions
	Partial Correctness Properties
	A Valid Partial Correctness Property
	Proof Rules for Partial Correctness

