
Software-Modellierung und Verifikation

Informatik 2

Prof. J.-P. Katoen

RWTH Aachen

Priv.-Doz. T. Noll noll@cs.rwth-aachen.de
C. Jansen christina.jansen@cs.rwth-aachen.de

10. Exercise sheet Semantics and Verification of Software SoSe2010
Due to Monday, 5th July 2010, before the exercise course begins.

Exercise 10.1: (1+3 points)

Consider the following program fragment c calculating the product of a and b storing the result in the variable
product.

begin
var b ;
procedure mult i s product := a ∗ b ;
b := 1 ;
begin

var b ;
b := 2 ;
c a l l mult ;

end
end

(a) Provide an initial variable environment ρ0 and program state σ0, for which it holds that ∀π0 (supposing
static scope semantics are used):

(ρ0, π0) ` 〈c, σ0〉 → σ0[0/2, 1/2, 2/1]

(b) Proof your claim from part a) using operational semantics given in lecture 15.

Exercise 10.2: (2+2 points)

Consider the following modification to our WHILE language, where procedures have (exactly) one parameter:

p ::= proc P (x) is c; p | ε ∈ PDec
c ::= . . . | call p(a) ∈ Cmd

Lift the operational semantics to meet the extended language, i.e. define new call and block rules

(a) for a call by value parameter.

(b) for a call by reference parameter. (Without restriction you can assume that a in call p(a) is indeed a variable
here.)

Exercise 10.3: (2+2 points)

Taking the extended WHILE language introduced in lecture 15 as basis, give denotational semantics for this lan-
guage restricted to non-recursive (no direct or indirect recursion!) procedures.

Now assume we allow recursive procedures in our WHILE language. Which problems do occur in your semantics
now? How could they be solved?


