SOFTWARE-MODELLIERUNG UND VERIFIKATION Priv.-Doz. T. Noll _ .. noll@cs.rwth-aachen.de
C. Jansen christina.jansen@cs.rwth-aachen.de
INFORMATIK 2

PrROF. J.-P. KATOEN
RWTH Aachen

10. Exercise sheet Semantics and Verification of Software SoSe2010

Due to Monday, 5th July 2010, before the exercise course begins.

Exercise 10.1: (143 points)

Consider the following program fragment c calculating the product of a and b storing the result in the variable
product.
begin
var b;
procedure mult is product := a * b;
b = 1;
begin
var b;
b = 2;
call mult;
end
end

(a) Provide an initial variable environment py and program state og, for which it holds that Vmy (supposing
static scope semantics are used):

(po,mo) F (¢, 00) — a0[0/2,1/2,2/1]

(b) Proof your claim from part a) using operational semantics given in lecture 15.

Exercise 10.2: (242 points)

Consider the following modification to our WHILE language, where procedures have (exactly) one parameter:

p == proc P(z)isc; p|e e PDec
¢ == ... |callp(a) € Cmd

Lift the operational semantics to meet the extended language, i.e. define new call and block rules
(a) for a call by value parameter.

(b) for a call by reference parameter. (Without restriction you can assume that a in call p(a) is indeed a variable
here.)

Exercise 10.3: (242 points)

Taking the extended WHILE language introduced in lecture 15 as basis, give denotational semantics for this lan-
guage restricted to non-recursive (no direct or indirect recursion!) procedures.

Now assume we allow recursive procedures in our WHILE language. Which problems do occur in your semantics
now? How could they be solved?

