

2. Exercise sheet *Semantics and Verification of Software SoSe2010*

Due to Monday, 3rd May 2010, *before* the exercise course begins.

Exercise 2.1:

(2 points)

In our WHILE language the evaluation of (arithmetic) expressions has no *side effects*—it does not change the state. If we were to model side effects it would be natural to consider an evaluation relation of the form

$$\langle a, \sigma \rangle \rightarrow \langle z, \sigma' \rangle$$

where σ' is the state that results from the evaluation of a in the original state σ . To introduce side effects in WHILE, extend the arithmetic expressions by a construct

c resultis a

where $c \in \mathbf{Cmd}$ and $a \in \mathbf{AExp}$. To evaluate such an expression, c is first executed and then a is evaluated in the new state. Formalize this idea by giving it operational semantics.

Exercise 2.2:

(1+2 points)

- (a) Write a WHILE program, which transforms a given decimal number x into its binary representation. Store the resulting binary number as an arithmetic or string expression (using the syntax and semantics from Ex. 1.1).
- (b) Construct the derivation tree by means of operational semantics for this program starting in a state $\sigma \in \Sigma$ with $\sigma(x) = 3$.

Exercise 2.3:

(2 points)

As already mentioned in the lecture well-foundedness is a required property for relations to support the application of the induction principle.

Definition 1 (Well-founded relations) A well-founded relation is a binary relation \prec on a set A such that there are no infinite descending chains $\cdots \prec a_i \prec \cdots \prec a_1 \prec a_0$.

Show that the following proposition holds:

Proposition 1 Let \prec be a binary relation on a set A . The relation \prec is well-founded iff any nonempty subset Q of A has a minimal element, i.e. an element m such that

$$m \in Q \wedge \forall b \prec m : b \notin Q.$$

Exercise 2.4:

(1+1+2 points)

- (a) Extend the WHILE language by a loop construct of the form

repeat *c* until *b*

and define its execution relation \rightarrow without (explicitly) using the **while** statement.

(b) Establish the following semantic equivalence:

$$\mathbf{repeat} \ c \ \mathbf{until} \ b \sim c; \mathbf{if} \ b \ \mathbf{then} \ \mathbf{skip} \ \mathbf{else} \ (\mathbf{repeat} \ c \ \mathbf{until} \ b).$$

(c) Establish the following semantic equivalence:

$$\mathbf{repeat} \ c \ \mathbf{until} \ b \sim c; \mathbf{while} \ \neg b \ \mathbf{do} \ c.$$